Organometallic Chemistry in the Gas Phase[‡]

KARSTEN ELLER*.§ and HELMUT SCHWARZ*

Institute of Organic Chemistry, Technical University Berlin, Strasse des 17. Juni 135, D-1000 Berlin 12, Germany

Received December 13, 1990 (Revised Manuscript Received May 7, 1991)

Contents

Ι.	Introduction	1121
II.	Instrumentation	1122
III.	Reactions of Bare Metal Ions with Diatomics	1123
	and Triatomics	
	A. Dihydrogen	1123
	B. Others	1124
IV.	Reactions of Bare Metal Ions with Alkanes	1124
	A. Methane and Ethane	1124
	B. Linear Alkanes	1126
	C. Branched Alkanes	1130
	D. Cycloalkanes	1132
۷.	Reactions of Bare Metal Ions with Unsaturated	1135
	Hydrocarbons	
	A. Alkenes	1135
	B. Alkynes	1137
	C. Alkadienes	1140
VI.	Reactions of Bare Metal Ions with Nitriles and	1140
	Isonitriles	
	A. Linear Nitriles and Related Compounds	1140
	B. Isonitriles and Branched Nitriles	1142
VII.	Reactions of Bare Metal Ions with Other	1146
	Substrates	
	A. Alkyl Halides and Alcohols	1146
	B. Ammonia and Amines	1148
	C. Carbonyl Compounds	1149
	D. Ethers	1151
	E. Aromatic Compounds	1151
	F. Others	1152
VIII.	Reactions of Ligated Metal Ions	1155
	A. MH^+ and $L_n MH^+$ lons	1155
	B. MCH_3^+ and $L_n MCH_3^+$ lons	1155
	C. MX_n lons (X = F, CI, OR, NH_2)	1157
	D. $M = X^{+}$ and $L_n L'_m M = X^{+}$ lons ($X = CH_2$,	1158
	O, S, NH)	
	E. $MO_x H_y$ lons	1101
TV	F. M(UU) _n ' IONS	1103
IX.	Bond Dissociation Energies	1104
X.		1105
XI.	Acknowledgments	1100

'Naked'—and in a postcript here he says 'Alone'. Can you advise me?

Hamlet, Act 4, Scene 7

I. Introduction

The gas-phase chemistry of organometallic systems is not only a very interesting field in its own right, but it has also undergone rapid progress over the last dec-

Karsten Eller was born in Solingen (Nordrhein-Westfalen) in 1965. He studied chemistry at the Technische Universität Berlin (1984–1988) being a scholar of the Studienstiftung des Deutschen Volkes. His Diploma Thesis on gas-phase organometallic chemistry was awarded with the 1989 Joachim Tiburtius Award of the Land Berlin, and he also received the Klaus Koch Award of the TU Berlin during his study. He wrote his Ph.D. thesis in Professor Helmut Schwarz's group, dealing with mechanistic studies on the reactions of bare and ligated transition-metal ions with model substrates. This stimulated his interest in organometallic chemistry in general and so he decided to spent some time as a postdoctoral fellow in Yale joining Professor Robert H. Crabtree.

Helmut Schwarz was born in Nickenich (Rheinland-Pfalz) in 1943. He spent four years as a technician in chemical industry before studying chemistry at the Technische Universität Berlin (1966–1971). He received his Ph.D. with Professor Ferdinand Bohlman in 1972, and since 1978 he has been Professor of Chemistry at the TU Berlin. He received several awards, the most recent ones being the 1989 Otto Bayer Award for Chemistry and a Leibniz Research Award by the Deutsche Forschungsgemeinschaft. His research interests include gas-phase organometallic chemistry, mechanistic studies in organic mass spectrometry, computational chemistry, as well as peptide sequencing and the generation of elusive neutrals using MS techniques.

ade. Certainly part of the interest arises from the fact that now, more than ever, it is being realized that knowledge about the *intrinsic* properties of bare or

[†] Dedicated to Professor Dr. K.-H. Büchel, BAYER AG Leverkusen, on the occasion of his 60th birthday.

⁸Present address: Department of Chemistry, Yale University, New Haven, CT 06511.

ligated transition-metal ions, or the respective neutrals, can give valuable hints on mechanisms operative in the condensed phase and efficiencies of stoichiometric or catalytic processes in general. Especially the activation of C-H or C-C bonds in alkanes, processes that are not that easily achieved in homogeneous or heterogeneous catalysis,^{1,2} is an important area of research. A better understanding of the crucial steps³ and a complete characterization of possible intermediates⁴ would be desirable in order to improve catalysts and to make use of the huge potential that lies in the (chemical) exploitation of natural gases and fuel feedstocks. No wonder that many of the first organometallic reactions studied in the gas phase were concerned with alkane functionalization. But even today, as the activation of numerous X-Y bonds in many model compounds is being studied, e.g., the cleavage of nonactivated C-H and/or C-C bonds in functionalized alkane derivatives anchored with their functional group to the metal center, there still is a major challenge as the details of these processes are not yet fully understood. Thus, interest in gas-phase organometallic chemistry is continuing, and the fascination about these mechanistic studies has not decreased at all.

Gas-phase studies are particularly well-suited for the elucidation of basic properties of isolated molecules and for probing elementary reactions under well-defined conditions since they are not hampered by the various disturbing factors that prevail in solution which include, e.g., associations by ion pairing, solvent-shell interactions, intra- and intermolecular processes which lead to destruction and/or modification of the catalytically active species (e.g. cyclometalation⁵). The advantages of gas-phase studies arise, of course, from the spatial dispersion of the organometallic species under the high-vacuum conditions employed. To maintain control over the particles of interest and to identify eventually formed reaction products, a charge on them is of great help, and for that reason most of the research has been performed with ionic compounds. This review will therefore be restricted to the gas-phase *ion* chemistry of transition-metal containing species while studies on neutrals⁶ will be excluded. We will also exclude negatively charged particles from the discussion since a fairly recent, comprehensive review is available already,⁷ and only a few additional papers have appeared in the meantime which deal with anion/molecule reactions.⁸⁻²⁸ The related field of gas-phase cluster chemistry, i.e., reactions of transition-metal clusters $M_x^{29,30}$ or cluster ions $M_x^{+,306,31-33} M_x M'_y^{+,34}$ or $M_x L_y^{+,33x,z,35-40}$ (M, M' = transition metal, L = ligand) with neutral substrates, will also be excluded, and only few references will be given where appropriate.

What will be described in great depth is the chemistry of bare ("naked") or ligated transition-metal ions with the ensemble of substrates that has arisen interest in the various groups active in this field. An earlier review on the topic is available,⁴¹ but for the sake of better understanding, and since nowadays slightly modified views about several of the mechanisms proposed earlier have to be adapted, part of this material is included as well. Besides, several more specialized reviews exist which are concerned with the work of individual groups, namely those of Freiser,⁴² Armentrout,⁴³ Beauchamp,^{43b,44,45} Bowers,⁴⁵ Allison,⁴⁶ and ours.⁴⁷ In ad-

Figure 1. Schematic drawing of a cubic FTIR cell, located in a magnetic field of the strength B (1 – 7 T in modern instruments) in the positive z direction. T and T' are the trapping, E and E' the excitation, and R and R' the receiver plates.

dition, a recent review focuses on MS/MS techniques for elucidation of metal ion/molecule reactions.⁴⁸ We refrain from a further compilation of all the thermochemical data, that has been determined so far, since this information can already be found tabulated in refs 41-45. In the present article, the literature is covered up to early 1991.

II. Instrumentation

For the vast majority of the studies to be described, three different instrumental techniques have been employed, viz. ion/molecule reactions in ion cyclotron resonance spectrometers, ion-beam experiments in the appropriate apparatuses, and metastable or collisioninduced decompositions of organometallic complexes in tandem mass spectrometers of the sector or quadrupole type.

Ion cyclotron resonance (ICR)⁴⁹ and in particular Fourier transform ion cyclotron resonance (FTICR)⁵⁰ mass spectrometers are ideally suited for the study of ion/molecule reactions, and the potential of ICR studies for gas-phase organometallic chemistry has been realized early.⁵¹ The technique will be depicted only briefly for the modern FTICR instruments. Ions, generated by one of the many ionization methods, can be stored in crossed magnetic and electric fields, by using for example the cubic cell shown in Figure 1. The magnetic field restricts the ion motion to circular paths in the xy dimension while small potentials on the trapping plates T and T' limit the z-axial motion. Transitionmetal ions, stored in the FTICR cell, can undergo reactions with simultaneously present neutral compounds, and, after a variable reaction delay, products can be detected by the image current that is induced in the receiver plates R and R'. The angular, or cyclotron frequency, i.e., the frequency by which the ions are circling in the xy plane, is dependent on the mass-tocharge ratio, and the superposition of all frequencies is subjected to a Fourier transformation to obtain the mass spectrum. Double resonance techniques⁵² allow the identification of the precursor ions that give rise to the individual reaction products, and therefore primary, secondary, tertiary, etc. reactions can be determined unambiguously. To obtain structural information, low-energy collisional activation (CA), or collision-in-

Figure 2. Schematic drawing of a guided ion-beam instrument, consisting of ion source (IS), acceleration (AS) and deceleration (DS) stage, magnetic sector (B), octopole ion guide (O), collision chamber (CC), quadrupole mass filter (Q), and detector (D).

duced dissociation (CID)⁵³ which is the more common term in the FTICR literature, can be brought about by accelerating a specific ion into a stationary target gas with subsequent detection of the resulting fragment ions. The kinetic energy is hereby enlarged by applying a pulse with the ion's cyclotron frequency to the excitation plates E and E'. Alternatively, shining light onto stored ions may result in photodissociation which gives a characteristic PD spectrum as well as an upper limit for bond dissociation energies.⁵⁴ The most convenient way to generate transition-metal ions is by laser desorption/ionization (LD/I) from a pure metal target; this not only affords abundant metal ion currents but also ideally matches the pulsed nature of the FTICR experiment.⁵⁵

Ion-beam experiments are performed in guided ionbeam mass spectrometers designed to measure the energy dependencies of reactions of mass selected ions with stationary target gases at ambient temperature. Application of the technique to organometallic chemistry has been pioneered by Armentrout and Beauchamp. Early studies employed a simple instrument which, basically, consisted of an ionization source, energy selection device, collision chamber, and a quadrupole mass filter with detector. $^{56-59}$ All ions that were provided by the surface-ionization source were accelerated to a defined energy and collided in the chamber with the reagent gases, and reaction products were determined with the quadrupole. Shortly after, improvement was gained by the introduction of a magnetic sector for mass selection of the primary ions which were decelerated after the magnet before entering the collision chamber.^{60,61} The method has been brought to near perfection by Armentrout, mainly by the use of an octopole ion guide, which provided efficient product collection and precise energy determinations, and by the use of drift cells for collisional relaxation of excited states in the primary ion beam.^{62,63} A schematic representation of such an ion-beam instrument is given in Figure 2; a detailed description of one of the latest versions used in the Armentrout group may be found in ref 64a and the technique is reviewed in ref 64b.

Similar to the ion-beam instruments is the use of triple-quadrupole mass spectrometers for ion/molecule reactions, where Q_1 is used for selection of e.g. a metal ion, Q_2 is operated in the "RF only" mode and filled with the neutral reagent gas while Q_3 is used for product ion identification.⁶⁵

Metastable or collision-induced decompositions represent the third major variant in gas-phase organometallic studies; the first application was by Freas and Ridge in 1980. Multisector instruments have been employed, although in principle every kind of tandem mass spectrometer^{66,67} could be used. The major difference to the other techniques is that organometallic complexes are studied, whose decomposition pathways are investigated. These complexes are formed in the ion source of the instrument, and most conveniently, a

Figure 3. Schematic drawing of a multisector mass spectrometer, consisting of an ion source (IS), three sectors (MS I–III), which can be either magnetic or electrostatic analysers, several collision cells (CC), and a detector (D).

high-pressure chemical ionization (CI) source is employed in which a ca. 1:5 mixture of an appropriately volatile organometallic compound (e.g. $Fe(CO)_5$ or Co- $(CO)_3NO$ and the substrate is ionized with 100-eV electrons. Various ion/molecule reactions inside the source may give rise to 1:1 complexes of the metal ion with the substrate. Alternatively, such complexes can also be generated by the "FAB method",⁶⁸ where a target of an inorganic salt is bombarded with fast Xe atoms, and liberated metal ions and/or clusters react with the simultaneously present substrate. Complexes formed by either ionization method are then extracted from the source and mass selected with a magnetic or an electric sector. In a field-free region of the instrument their unimolecular decompositions (metastable ions, MI⁶⁹) or high-energy collision-induced dissociations (CID or CA, collisional activation⁷⁰) are studied by scanning of a further sector. Multisector instruments such as the one schematically given in Figure 3 also allow structural characterization of unimolecularly generated daughter ions by further collisional activation in a collision cell in front of a final sector. To achieve high parent ion resolution, the complex is usually selected in a double-focusing mode employing the first two sectors (MS I + II), while products are detected by scanning of MS III.

It is not self-evident that, e.g., ion/molecule reactions of bare transition-metal ions M^+ with a neutral substrate S is an FTICR instrument and metastable-ion studies on $M(S)^+$ adduct complexes yield similar results, but comparisons have shown that if several restrictions are kept in mind, agreement in product distribution is fair, and good, if not excellent, agreement is found for label distributions of individual reactions.⁷¹⁻⁷⁵ Similar comparisons have been drawn between low-energy ion-beam investigations and MI and CID spectra of transition-metal ion/alkane complexes.⁷⁶

III. Reactions of Bare Metal Ions with Diatomics and Triatomics

A. Dihydrogen

Probably the simplest reaction involving transitionmetal ions is the one given in eq 1. In view of its

$$M^+ + H_2 \rightarrow MH^+ + H \tag{1}$$

fundamental nature, this reaction has been studied most carefully with ion-beam instruments by reacting different metal ions of a well-defined energy with H_2 and its isotopomers HD and D_2 . The absolute reaction cross section, $\sigma(E_T)$, is studied as a function of the metal ion's kinetic energy, and one obtains curves such as the one given in Figure 4. To account for kinetic energy distributions of the reactants, this experimental curve is fitted to a parameterized equation in order to obtain the true threshold of the reaction, from this the bond dissociation energy $D^{\circ}(M^+-H)$ can be calculated. Data is now available for the complete first row of the d-

Figure 4. Cross sections for the reaction of Sc^+ with HD as a function of kinetic energy in the center of mass frame (lower scale) and laboratory frame (upper scale). Open and closed circles show the results for production of ScH^+ and ScD^+ , respectively. The line shows the total cross section. The arrow indicates the bond dissociation energy of HD at 4.52 eV (reprinted from ref 78; copyright 1989 American Chemical Society).

block, Ca^+-Zn^+ , ^{63,77-88} the second row, Y^+-Ag^+ , ^{78,89,90} except for Tc⁺, of course, Ba⁺, ⁵⁹ La⁺, and Lu⁺ as the only lanthanides, ⁷⁸ and U⁺ as the only actinide ion. ^{66,57} Thermochemical data, especially those derived from elder works, suffered from the problem of excited states of the metal ion that may be present in the primary ion beam. The use of different ion sources, each generating a specific population of electronic states, combined with data subtraction techniques has allowed the determination of *state-specific* cross sections and ground-state bond dissociation energies.

From comparison of the various metal ions, several periodic trends in reactivity emerged, and simple MO arguments were used to classify the metal ions into three categories.⁴³ Reaction 1 can proceed in two different ways: A $C_{\infty v}$ approach of H₂ results in hydrogen abstraction and avoids insertion into the H-H bond, but requires a low-spin configuration of the metal ion. Alternatively, a C_{2v} approach with subsequent insertion gives a dihydride intermediate, MH_2^+ , which then splits off a hydrogen atom. A prerequisite for this mechanism is an unoccupied s or $d\sigma$ orbital. The three categories are therefore: (1) metal ions with unoccupied s or $d\sigma$ orbitals, which can react efficiently via a MH₂⁺ intermediate (reaction with HD leads to near statistical behavior for these ions), (2) low-spin ions with occupied $s/d\sigma$ orbitals, which also react efficiently, but via direct abstraction, favoring by ca. 4:1 the MH⁺ product over MD^+ in the reaction with HD, (3) high-spin ions with occupied $s/d\sigma$ orbitals, which react inefficiently via pairwise interaction, substantially favoring MD⁺. Exceptions from these simple rules may occur if crossings of potential-energy surfaces are possible.

A correlation has been found for metal-hydride dissociation energies $D^{\circ}(M^{+}-H)$ and promotion energies $(E_{\rm p})$ to s¹dⁿ spin-decoupled configurations, which works well for first-row ions and shows deviations for the second row, where exceptions from the concept of exclusive s or d σ bonding seem to exist.^{43,89,91,92} An *intrinsic* M⁺-H bond dissociation energy of 56 kcal mol⁻¹ for first-row metal ions and of 58 kcal mol⁻¹ for second-row metal ions has been derived from the resulting linear graphs, taking the maximum values for $E_p = 0$ as references.^{43g}

Many MH⁺ systems have also been studied theoretically due to their relative simplicity so that a comparison with the experimentally determined data is possible. Agreement between experimental and theoretical values is usually good, with the first row giving a smaller discrepancy than the second. It is indeed calculated that bonding results from overlap of s and $d\sigma$ orbitals, thus justifying the assumptions used to derive the rules described above.⁹³⁻⁹⁶ The assumptions are also supported by calculations on some of the dihydride intermediates MH₂^{+, 93e,h,o,v,97}

B. Others

Similar to the determination of $D^{\circ}(M^{+}-H)$ energies, other diatomics and simple polyatomic molecules R-X can be employed to determine $D^{\circ}(M^{+}-X)$ energies. Dioxygen has been used to measure the $D^{\circ}(M^{+}-O)$ bond dissociation energies of Ca⁺-Zn⁺, ^{32g,1,98-100} Nb⁺, ^{32g} and U^{+ 101} in ion-beam instruments. Exothermic reactions with several oxygen donors in an ICR instrument were used to bracket some $D^{\circ}(M^{+}-O)$ energies, ¹⁰²⁻¹⁰⁴ and photodissociation¹⁰⁵ as well as variable-energy CID^{60,106} on MO⁺ ions was also employed to determine the dissociation energies. The technique is also applicable to small clusters, as evidenced for example with Mn₂^{+ 32c,i} or Co₂⁺.^{43c}

Other gases have been occasionally employed as well; dinitrogen, carbon monoxide, carbon oxysulfide, and others gave several $D^{\circ}(M^+-N)$, $D^{\circ}(M^+-C)$, and $D^{\circ}(M^+-S)$,^{32i,56,101,107} while lower limits for $D^{\circ}(M^+-I)$ and $D^{\circ}(M^+-C1)$ were determined with ICl.¹⁰⁸ Only few theoretical^{46b,95,109} or other experimental¹¹⁰ data exists for these diatomics so that reliable comparisons are difficult.

IV. Reactions of Bare Metal Ions with Alkanes

A. Methane and Ethane

1. Methane

The reactions of bare metal ions with methane have been studied with a variety of techniques. Most transition-metal ions do not react with CH_4 in FTICR experiments since only exothermic ion/molecule reactions can be observed by using this method.^{11,42g,103,104,111-114}

Under the multicollision conditions of a flowing afterglow instrument,¹¹⁵ all first-row ions, except for Mn⁺, were observed to undergo clustering reactions, forming $M(CH_4)_n^+$ ions, without any indication of C-H activations.¹¹⁶ Mn⁺ was apparently unreactive, or the rate constant for the third-body collisional stabilization of the reactive intermediate (MnCH₄⁺)* was too slow to be observed. A high-pressure drift cell was also employed to study the CoCH₄⁺ adduct formation.¹¹⁷ Since the drift cell is able to separate ground and excited states of Co⁺ by their different mobilities,¹¹⁸ the rate constant could be specifically determined for the ground state. Low-energy Ru⁺ and Rh⁺ ions were also found to be unreactive toward methane.¹¹⁹

Exothermic dehydrogenation of CH_4 by Cr^+ (eq 2) was found to arise from the formation of long-lived

excited states of Cr⁺ under the 70-eV electron-impact conditions employed.^{33v,73,120-123} The electronic states of the CrCH₂⁺ ion have been investigated by using high-resolution translational energy loss spectroscopy.¹²²

$$(Cr^+)^* + CH_4 \rightarrow CrCH_2^+ + H_2 \tag{2}$$

Two (ground-state) metal ions are known to react exothermically with methane analogous to eq 2, viz. Os^{+ 124} and Ta⁺.^{114,125} The endothermic reactions of many transition-metal ions with CH₄ to afford $D^{\circ}(M^+-H)$, $D^{\circ}(M^+-CH_3)$, $D^{\circ}(M^+-CH_2)$, and $D^{\circ}(M^+-CH)$ from eqs 3–6, respectively, have been studied in ion-beam experiments.^{43,56,57,86,126–130}

$$M^+ + CH_4 \rightarrow MH^+ + CH_3 \tag{3}$$

$$\rightarrow$$
 MCH₃⁺ + H (4)

$$\rightarrow \mathrm{MCH}_2^+ + \mathrm{H}_2 \tag{5}$$

$$\rightarrow MCH^+ + H_2 + H \tag{6}$$

Bond dissociation energies derived from eq 3 can be compared to those from eq 1 as a check for consistency. The formation of MH⁺ in eq 3 has been described as a result of a competition between direct abstraction and insertion into a C-H bond. The metal ion-methyl bond dissociation energies $D^{\circ}(M^+-CH_3)$ were found to be slightly larger than the metal-hydrogen values. This finding is in strong contrast to the condensed-phase data which indicate a large difference between M-H and M-C bond dissociation energies in neutral organometallic complexes, at least for the late transition elements.¹³¹⁻¹³⁴ The significantly weaker M-C bonds are believed to result from steric crowding in the multiligated complexes, factors which are absent for the bare metal ions. It has also been suggested that agostic interactions,¹³⁵ electronegativity differences,¹³⁶ or exchange repulsions between occupied metal orbitals and the fully occupied σ -orbital on CH₃^{93r,137} might be responsible for the discrepancy.

The M⁺—CH₃ bond has been discussed in terms of a single bond while M⁺=CH₂ and M⁺=CH are regarded as double and triple bonds; correlations of $D^{\circ}(M^+$ —CH_x) versus $D^{\circ}(H_xC$ —CH_x) of the neutral organic hydrocarbons are found to be linear.¹³⁸ From correlations of bond dissociation energies versus promotion energies to sdⁿ⁻¹ spin-decoupled states, similar to the correlation for M⁺—H mentioned above,^{43,91,139} *intrinsic* single, double, and triple bond dissociation energies were derived from the graphs for $D^{\circ}(M^+$ — CH₃), $D^{\circ}(M^+$ =CH₂), and $D^{\circ}(M^+$ =CH) and given as 60, 101, and 135 kcal mol⁻¹, respectively.^{43g}

The bond dissociation energies obtained in the ionbeam studies have been compared with the results from photodissociation and bracketing experiments in FTICR instruments and were found to correlate well.^{105,140-142} A lot of theoretical data is also available for the transition-metal methyl, methylidene, and methylidyne cations,^{93d,f,r,94c,96,109g,143-146} and a prescription has been published that converts the experimental data for ligand-deficient complexes into those for saturated organometallic complexes.¹⁴⁷

Three studies have been reported that deal with the chemistry of *dipositive* metal ions with CH_4 . The reactions of Ti^{2+148} and $Nb^{2+149,150}$ are very similar and give rise to three products, (eqs 7-9) except for clus-

tering reactions to $Ti(CH_4)_n^{2+}$ that were observed under the higher pressures possible in the flowing afterglow.

$$M^{2+} + CH_4 \rightarrow MCH_2^{2+} + H_2 \tag{7}$$

$$\rightarrow MH^+ + CH_3^+ \tag{8}$$

$$\rightarrow M^+ + CH_4^+ \tag{9}$$

2. Ethane

In the gas-phase chemistry of transition-metal ions with ethane, several reactions are observed, eqs 10–16, that can be rationalized in terms of the general mechanism depicted in Figure 5. For a given metal ion only

$$M^+ + C_2 H_6 \rightarrow M C H_3^+ + C H_3 \tag{10}$$

$$\rightarrow \mathrm{MCH}_2^+ + \mathrm{CH}_4 \tag{11}$$

$$\rightarrow MC_2H_4^+ + H_2 \tag{12}$$

$$\rightarrow MC_2H_2^+ + 2H_2 \tag{13}$$

$$\rightarrow \mathrm{MH}_2^+ + \mathrm{C}_2\mathrm{H}_4 \tag{14}$$

$$\rightarrow MH^+ + C_2 H_5 \tag{15}$$

$$\rightarrow MH + C_2 H_5^+ \tag{16}$$

some of the reactions may be observed, and they are endothermic in most cases. A multitude of bond dissociation energies was once again derived from eqs 10-16, and the occurrence or nonoccurrence of certain reactions for the different metal ions was discussed in terms of spin-allowed or spin-forbidden C-H/C-C oxidative additions,⁴³ or impulsive, pairwise interactions.¹⁵¹

The only exothermic reactions that are observed are the single and double dehydrogenation, eqs 12 and 13. For ground-state metal ions, the only members of the first row to exothermically dehydrogenate C_2H_6 are Sc⁺ and Ti^{+,42g,79,116,126,152-156} On the contrary, most of the second- and third-row transition-metal ions were observed to react exothermically with C_2H_6 , thus the C-H activation is much more facile for 4d and 5d ions.^{11,103,111,113,114,119,124-128,157} Very inefficient exothermic dehydrogenation of ethane for ground-state Fe⁺ (⁶D) has been reported,¹³⁰ but more recent work indicates that this is due to a small amount of highly excited states.^{43e} Observing the reactions in eqs 12 and 13 to proceed with exothermicity implies $D^{\circ}(M^+-C_2H_4) \ge$ 32.7 kcal mol⁻¹ and $D^{\circ}(M^+-C_2H_2) \ge$ 74.5 kcal mol⁻¹, which can be compared to calculated data for $MC_2H_4^{+96,97e,158a,159}$ and $MC_2H_2^{+;96,97e,158}$ however, the agreement with the experimental data is not too good.

The dehydrogenation of ethane for the early transition metal ion V⁺ has been found to be due to excited states;¹⁶⁰ although the overall reaction is exothermic, a barrier arising from spin conservation prevents ground-state V⁺ from forming the H-V⁺-C₂H₅ insertion intermediate. Using a very elegant technique,^{161a} Weisshaar and co-workers were able to show that the H₂ loss was due to the second excited a³F term (1.1 eV above ground state) and that the spin-orbit levels J =2, 3, and 4 react with *indistinguishable cross sections*.^{161b,162,163}

An interesting correlation has been found for the rate of adduct formation between the first-row ions Sc^+ through Zn^+ and ethane under multicollision conditions

Figure 5. Generalized mechanism for the exothermic and endothermic reactions of transition-metal ions M⁺ with ethane.

(eq 17) and the energies of the $3d^n$ configurations.¹⁵³ Notably is an extremely low rate for Mn^+ which, as is shown below, is generally reacting quite slowly with various substrates.

$$\mathbf{M}^{+} + \mathbf{C}_{2}\mathbf{H}_{6} + \mathbf{H}\mathbf{e} \rightarrow \mathbf{M}\mathbf{C}_{2}\mathbf{H}_{6}^{+} + \mathbf{H}\mathbf{e} \qquad (17)$$

The doubly charged Ti²⁺ is reported to react with C_2H_6 to $\geq 90\%$ via H⁻ transfer and to a smaller extent ($\leq 10\%$) via charge transfer, affording TiH⁺ and Ti⁺, respectively.¹⁴⁸ The same types of reactions take place with propane. In contrast, Nb²⁺ affords NbC₂H₂²⁺, NbH⁺, and Nb⁺ with ethane, but almost exclusively Nb⁺ with propane and butane.¹⁵⁰

B. Linear Alkanes

The reaction of a transition-metal ion with propane is distinct from the one with ethane. In the former case it is (a) now possible to exothermically activate a C-C bond, and (b) two types of C-H bonds are present in the substrate. As a result, exothermic reactions that further reveal preferences for either C-H or C-C activation are observed for most of the metal ions. Exceptions are Cr⁺, Mn⁺, Cu⁺, and Zn⁺ in the first row, and the lanthanides Eu⁺ and Pr⁺; all those metal ions are generally unreactive with alkanes in the sense that no exothermic reactions are found. Three reactions are noted frequently, C-H activation gives rise to loss of H₂ and 2H₂ (eqs 18 and 19), while C-C activation affords loss of CH₄ (eq 20).

$$M^+ + C_3 H_8 \rightarrow M C_3 H_6^+ + H_2$$
 (18)

$$\rightarrow MC_3H_4^+ + 2H_2 \tag{19}$$

$$\rightarrow MC_2H_4^+ + CH_4 \qquad (20)$$

Furthermore, triple dehydrogenation has been observed for Nb⁺ and Ta⁺,^{114,125} Os⁺ shows the unusual losses of H₂/CH₄ and, formally, $[C_2H_6]$,¹²⁴ and finally, for Au⁺, loss of AuH was also observed.¹¹ In general, the second- and third-row transition-metal ions reveal an increased tendency for C-H activations with the losses of H₂ and 2H₂ clearly dominating. For the first-row ions the double dehydrogenation is only observed for Sc⁺,⁷⁹ but this reaction is probably endothermic.¹⁶⁴ The now commonly accepted mechanism for the losses of H₂ and CH₄ is given in Figure 6.

Insertion of the metal ion into the weaker secondary C-H bond generates intermediate 6 that rearranges by β -hydrogen shift¹⁶⁵ to 9, from which reductive elimi-nation¹⁶⁶ of H₂ can occur.¹⁶⁷ Insertion into a C–C bond followed by β -hydrogen shift produces 10, from which the reductive methane elimination¹⁶⁸ is possible. The intermediacy of 7 is uncertain since it needs not to be introduced to explain the formation of the products; especially the β -methyl shift $7 \rightarrow 10$ is subject of controversies which have yet to be settled. Recently, angular momentum constraints have been put forward as an argument in favor of initial and rate-limiting C-H activation in the demethanation of propane by Co^{+.169} Kinetic energy release distributions (KERD's¹⁷⁰) for the unimolecular dissociations of $Co(C_3H_8)^+$ complexes and several ²H-labeled isotopomers thereof, together with the determination of absolute cross sections for the individual isotopomers and the energy dependences for the loss of H₂ versus CH₄ were interpreted as follows:¹⁷¹ At low kinetic energies, initial C-H insertion exclusively prevails, and both 6 and 7 are produced; 6 in a multicenter elimination and bypassing 9 undergoes loss of H₂, while 7 rearranges by β -H shift to 9 or by β -CH₃

Figure 6. Generalized mechanism for the reactions of transition-metal ions M⁺ with propane.

shift to 10, from which via reductive elimination H_2 and CH_4 are lost. At slightly elevated energies C-C activation to generate 8 is also observed, and the CH_4 -loss channel becomes relatively enhanced. Quite similarly, the energy dependence for the loss of H_2 versus CH_4 from the $Fe(C_3H_8)^+$ ion/(induced) dipole complex compared to that of the direct reaction of Fe⁺ with propane indicated that starting from the adduct complex, the C-H insertion has the lowest activation barrier (~11 kcal mol⁻¹) and may lead to loss of H_2 as well as of CH_4 . Loss of CH_4 by C-C insertion has a higher barrier, albeit still less than the ~20 kcal mol⁻¹ ion/ (induced) dipole well; hence, bare Fe⁺ may easily surmount this activation barrier.¹⁷²

A deviation from the generally operative 1.2 elimination mode in Figure 6 is reported for Sc⁺, where in addition 1.3 elimination has been postulated.^{79,164} For Ti⁺, a small amount of 1.3 elimination (7%) besides 1.2 elimination has been proposed, even though this could not be distinguished from possible scrambling processes.¹⁵⁵

An important observation has been made, concerning the reactivity of ground and first excited state of Fe^{+} (⁶D, ⁴F) with C_3H_8 .^{130,173} In contrast to the endothermic reactions of Fe⁺ with H_2 , CH_4 , or C_2H_6 , the ⁶D ground state is more reactive in exothermic processes below 0.4 eV while above that energy the ${}^{4}F$ state is reacting slightly more effective. This behavior is explained with adiabatic potential energy surfaces with an avoided crossing due to spin-orbit coupling at low energies. As the kinetic energy increases, the coupling becomes less efficient and the crossing becomes permitted, giving rise to diabatic potential energy surfaces. This result is significant beyond the particular Fe^+/C_3H_8 system; it demonstrates that the question of electronic excitation, which is of vital importance for small systems, in which even small amounts of excited states can influence the results dramatically, is less crucial for larger systems, for which surface crossings are frequent and occur at even lower energies because of deeper polarization wells. Yet, more recent results cast some doubt on this explanation; the spin-orbit quantum number J affects the $Fe^+ + C_3H_8$ cross section by as much as a factor of 2 while the branching for CH₄ versus H₂ loss is independent of $J.^{174}$ In particular, the 400-cm⁻¹ increase in total energy from J = 7/2 to J = 5/2 may be important in overcoming a small barrier along the reaction path, so that different J distributions may seriously complicate the interpretation of experimental results that do not allow a distinction among the J's. Little change in reactivity with electronic state has also been found for Ti^{+ 152} and V^{+,161b} but for the latter ion the cross section was again independent of J, contrary to the Fe⁺/C₃H₈ system but identical with V⁺/C₂H₆.^{161b}

A similar pattern of the rate constants for adduct formation has been noted for the methane and propane analogues of eq 17.¹¹⁶

The majority of the gas-phase studies of *n*-alkanes, and especially *n*-butane, with bare metal ions has been concerned with the group 8–10 metal ions Fe⁺, Co⁺, and Ni⁺. Early studies already revealed the occurrence of several reactions which proceeded exothermically and quite facile (eqs 21-24).^{73,120,175}

$$M^+ + n - C_4 H_{10} \rightarrow M C_4 H_8^+ + H_2$$
 (21)

$$\rightarrow MC_4H_6^+ + 2H_2 \qquad (22)$$

$$\rightarrow MC_3H_6^+ + CH_4 \qquad (23)$$

$$\rightarrow MC_2H_4^+ + C_2H_6 \qquad (24)$$

By employing $CD_3CH_2CH_2CD_3$, the mechanisms that led to the products could be determined. Using an ion-beam instrument, Armentrout and Beauchamp were able to show that the reaction of Co⁺ with *n*-butane to afford $CoC_2H_4^+$ is due to an initial insertion into the weak internal $C_{(2)}-C_{(3)}$ bond followed by β -hydrogen shift and reductive elimination of ethane $(14 \rightarrow 15 \rightarrow$ 3, Figure 7). Scrambling processes at low energies precluded exact determinations for the dehydrogenations, but loss of methane could be shown to proceed analogous to the propane system $(11 \rightarrow 12 \rightarrow 13)$.⁸⁶ Later it was shown for Ni⁺ that eq 21 is a highly specific 1.4 dehydrogenation.¹⁷⁶ The intermediate 15 still has the possibility for a second β -H shift to produce 16, from which reductive elimination of H₂ and formation of the bis(olefin) complex 17 can occur. 1.4 dehydro-

Figure 7. Generalized mechanism for the reactions of group 8-10 transition-metal ions M⁺ with *n*-butane, which arise from initial C-C insertions.

Figure 8. Structures of five different $MC_4H_8^+$ isomers experimentally distinguished.

genation with concomitant formation of a metallacycle 18 (Figure 8) could be excluded since the proposed mechanism was substantiated by ion/molecule reactions in an ICR instrument revealing the presence of two ethene ligands in $NiC_4H_8^+$ from *n*-butane.¹⁷⁶

The structure of 17 was subsequently confirmed by Jacobson and Freiser who were able to distinguish the four $MC_4H_8^+$ (M = Fe, Co, Ni) isomers 17–20 (Figure 8) by an elegant combination of CID experiments and ion/molecule reactions.^{177,178} 17, formed from $n-C_4H_{10}$ and Ni⁺, upon CID exclusively loses C_2H_4 and, formally, C_4H_8 ; reaction with CH_3CN gives sequential exchange of the two ethene ligands. If $NiC_4H_8^+$ is formed from alkanes larger than butane, CID affords loss of H_2 and C_4H_8 , consistent with structure 19. Isomer 20 is formed from branched alkanes (see below) and shows only loss of C_4H_8 . 18 is believed to be formed by decarbonylation of cyclopentanone and fragments upon CID by loss of H_2 , C_2H_4 , and C_4H_8 . A fifth $FeC_4H_8^+$ isomer has been characterized and distinguished from 17-20 in highenergy CID experiments; the reaction of methyl cyclopropane with $Fe(CO)_x^+$ in a high-pressure chemical ionization (CI) source generates 21.¹⁷⁹ 17-20 (M = Ni) may also be distinguished by photodissociation as 17 affords losses of C_2H_4 and C_4H_8 , 18 in addition H_2 , 19 H_2 , C_2H_4 , C_4H_8 , and CH_3 , forming Ni(η^3 - C_3H_5)⁺, and 20 in addition to C_4H_8 loses CH_4 .¹⁰⁶ While the reaction of Ni⁺ with *n*-butane was found to be highly specific, 176,177

the analogous reactions of Fe⁺ and Co⁺ were not. Both ions dehydrogenate this alkane by a combination of 1.2 and 1.4 elimination. For Co⁺, it has been estimated from the CID results that ca. 10% 1.2 dehydrogenation is active, while for Fe⁺ this is the even more important process, being responsible for ca. 70% of the dehydrogenation products.¹⁷⁸ The same percentages for Fe⁺ were later obtained from high-energy collisional-activation experiments.⁷⁴

Another possibility to distinguish 1.2 and 1.4 eliminations has been introduced by Beauchamp, Bowers, and co-workers.^{75,76} Kinetic energy release distributions¹⁷⁰ for the unimolecular dissociations of M(alkane)⁺ complexes showed characteristic differences for the loss of HD from Co(CD(CH₃)₃)⁺ (eq 25), which is believed to be a typical example for a 1.2 elimination (see below), and for loss of D₂ from Ni(CD₃CH₂CH₂CD₃)⁺ (eq 26), i.e., the 1.4 elimination. It could thus be shown that Co(CD(CH₃)₃)⁺ \rightarrow Co(CH₂C(CH₃)₂)⁺ + HD (25) Ni(CD₃CH₂CH₂CD₃)⁺ \rightarrow Ni(CH₂CD₂)₂⁺ + D₂ (26)

the observation of H_2 , HD, and D_2 loss from Co- $(CD_3CH_2CH_2CD_3)^+$ was not due to the simultaneous operation of 1.2 and 1.4 eliminations; instead, the dehydrogenation of n-butane by Co⁺ proceeds predominantly by a 1.4 mechanism, and scrambling processes are responsible for the observed label distribution.^{75,76} Further information which could be derived from the kinetic energy release distributions were a greater exothermicity for the 1.4 elimination as compared to the 1.2 process, and the data was also suggestive of significant barriers for the reverse reactions, i.e., oxidative addition of H_2 to the M(olefin)⁺ and, even more so, to the $M(olefin)_2^+$ complexes. This seems to be a general phenomenon for alkane dehydrogenation by Fe⁺-Ni^{+,45} On the contrary, for alkane losses, e.g., loss of CH_4 from $M(C_4H_{10})^+$, the data could best be interpreted in terms of a loose transition state in which the C-H bond has already been formed and intact alkane molecules are detached.^{45,76} In favorable cases, metal-ligand bond

Organometallic Chemistry in the Gas Phase

dissociation energies could be estimated by a comparison of experimental and theoretical data.⁷⁶

The reactions of Fe⁺, Co⁺, and Ni⁺ with linear alkanes larger than butane are merely an extension of the chemistry discussed so far. All the results can be explained with oxidative additions to C-H or C-C bonds followed by β -H shifts and reductive eliminations of neutral molecules to afford metal(olefin)⁺ or metal bis(olefin)⁺ complexes. If sufficient energy is available, subsequent reactions may lead to alkadiene complexes. The following generalizations emerged:

The dehydrogenation of linear alkanes with more than three carbon atoms by Ni⁺ proceeds exclusively by 1.4 eliminations as evidenced by deuterium labeling¹⁷⁶ and CID as well as ion/molecule reaction studies, which substantiated the resulting bis(olefin) structures of the dehydrogenation products.^{177,178} For Fe⁺ and Co⁺, in addition, 1.2 eliminations are operative.^{178,180} This is explained by the higher M⁺-H bond dissociation energies of the resulting R-M⁺-H insertion products in case of Fe⁺ and Co⁺, which make this C-H activation competitive with the C-C insertion that finally leads to the 1.4 dehydrogenation; the significantly weaker Ni⁺-H bond renders C-H insertion unattractive as compared to C-C activation.

The elimination of smaller alkanes in the reactions of Fe⁺ through Ni⁺ with linear alkanes are with one notable exception¹⁸⁰ always explained in terms of mechanisms analogous to those in Figures 6 and 7. Ni⁺ is found to exclusively activate C–C bonds to afford monoolefin complexes for larger alkanes than butane.¹⁷⁷ For Fe⁺ and Co⁺, C–H activation is also observed but insertion into C–C bonds is always favored and similarly gives rise to monoolefin complexes.^{177,178}

Selectivity is also observed for alkanes possessing different kinds of C-C bonds. Insertion into the terminal C-CH₃ bond is the least preferred which is explained by the slightly higher strength of this bond. This is in line with the selectivities found for the internal C-C bonds; the weakest bond is preferentially cleaved. Selectivity increases in the row $Fe^+ < Co^+ \ll$ Ni^{+,86,156,177,178,181} and is explained with the decreasing exothermicity of the insertion reaction. Models have been developed to predict the site of insertion in larger alkanes. If the bond dissociation energies of the resulting insertion intermediates $R-M^+-R'$ are taken as the most significant factor and differences in $D^{\circ}(R-R')$ are neglected, and if one assumes that the $D^{\circ}(M^{+}-C_{2}H_{2n+1})$ values increase with increasing polarizability of the $C_n H_{2n+1}$ fragments, and if, as such polarizabilities are not available, one furthermore assumes that the ionization potentials of the alkyl radicals, $C_n H_{2n+1}$, reflect, in part, their polarizabilities, one may correlate the site of insertion with the sum of the ionization energies of R and R'.¹⁸² It has also been argued that initial electrostatic interactions in complexes of the intact substrate and the metal ion might control the final product distributions.¹⁸³

Once the insertion has been accomplished, β -H shifts from different positions are optional. β -Hydrogen shifts from a secondary carbon are clearly more facile than those from a primary one for Co⁺ and Ni⁺.^{86,177,178,181} Co⁺ even shows preference for β -H shifts from a butyl over a propyl group.¹⁸⁴ Fe⁺ has been reported to be less selective, once again because of the greater exothermicities of its reactions,¹⁸¹ and even a reversal in selectivity has been proposed,¹⁷⁸ although this is in conflict with the other study¹⁸¹ and results for other substrates discussed below.¹⁸⁵ In general, β -H shifts are more facile for Co⁺ than for Ni⁺,¹⁷⁸ a result that may also account for the observation that deuterium scrambling in the reactions with alkanes is frequent for Co⁺, rarely observed for Fe⁺, and absent for Ni⁺.¹⁸⁰

Using an extensive set of labeled compounds, Houriet et al. concluded that while Ni⁺ reacts "normal" in the sense of the just mentioned processes, for Fe⁺, and to a lesser extent also for Co⁺, β -methyl shifts are responsible for part of the products formed.¹⁸⁰

In the reactions of gas-phase Sc^+ with alkanes a unique reactivity is exhibited which is clearly distinct from the behavior of the other first-row ions. Labeling studies revealed that dehydrogenations predominantly proceeded as 1.3 eliminations and that scandium-dialkyl ions were formed via loss of alkenes.⁷⁹ Figure 9 shows the proposed mechanisms for the reactions of Sc^+ with butane. C-H insertion generates intermediate 22 from which, by a concerted mechanism to conserve the oxidation state, H₂ elimination forms the metallacycle 23. Thermodynamic and possibly kinetic reasons were proposed to explain this unusual behavior. C-C insertion affords 24, and is followed by β -methyl transfer¹⁸⁶ and subsequent loss of ethene or, less favored, reductive elimination of ethane.

The products that are formed by Ti⁺ and V⁺ are very much alike. Both ions predominantly activate C-H bonds, giving rise to losses of H₂, multiples of H₂, or of H₂ together with small alkanes.^{42g,112,156,175} The use of labeled compounds showed that while V⁺ clearly dehydrogenates alkanes via the 1.2 mechanism and with a preference for internal positions, for Ti⁺ small amounts of product were formed that could either arise from 1.3 eliminations or scrambling processes.¹⁵⁵ No distinction was possible, and as for V⁺, from butane, 2-butene was formed in the single dehydrogenation. However, the observation of Ti(CD₃)₂⁺ by loss of C₂H₄ from CD₃CH₂CH₂CD₃ is also reported so that 1.3 dehydrogenation in analogy to the neighboring Sc⁺, which also formed this dimethyl complex, is not altogether unlikely.

The reactivity of second- and third-row transitionmetal ions has not been exploited in the same depth as that of the first row; the overall picture that emerges is, however, relatively straightforward. The activation of C-H bonds in the alkanes clearly dominates with only slight differences between the individual ions. This is completely in line with the results for C_2H_6 .

Y⁺ and La⁺ are found to singly and doubly dehydrogenate *n*-alkanes, with carbon-chain cleavages and multiple-loss products also observed. Metal-dialkyl ions,⁹⁶ such as CH₃-M⁺-CH₃, are postulated on the basis of deuterium labeling and CID experiments.¹¹³ Nb⁺ and Ta⁺ show mainly dehydrogenations with only small amounts of C-C cleavages.^{114,125} The unusual loss of a hydrogen *radical* has to be involved in the formation of NbCp⁺ (Cp = η^5 -c-C₅H₅) from *n*-pentane.¹¹⁴ In marked contrast to Cr⁺, which is unreactive with alkanes, Mo⁺ is seen to undergo facile multiple dehydrogenations. This has been explained by the greater M⁺-H and H-M⁺-R bond dissociation energies for M = Mo. The weak σ -bonds formed by Cr⁺ make the

Figure 9. Mechanism for the reaction of Sc⁺ with *n*-butane, which affords 1.3 dehydrogenation and formation of Sc⁺-dialkyl ions.

insertion in a C-H bond considerably more endothermic than for Mo⁺, where the larger size of the d orbitals is responsible for strong σ -bonds.¹⁵⁷ This picture seems to be supported by the results of ab initio calculations on CrH_2^+ and $MoH_2^{+,97a,d}$ In contrast to their first-row congeners, Ru⁺ and Rh⁺ are observed to dehydrogenate alkanes predominantly by 1.2 eliminations. The exclusive activation of C-H bonds, in contrast to Fe⁺ and Co⁺, is explained by differences in size and shape of the bonding orbitals and is believed not to be due to bond-strength differences.¹¹⁹ In the reactions with alkanes larger than C_4H_{10} , Rh^+ also forms small amounts of C-C cleavages besides multiple dehydrogenations, and dehydrocyclization is observed for $n-C_5H_{12}$ and $n-C_6H_{14}$.¹¹¹ Pd⁺, which forms H₂ and small alkanes from propane and butane, also exclusively dehydrogenates in a 1.2 elimination mode; from C_4H_{10} , 2-butene is selectively formed. Hydride abstraction due to the uniquely high Lewis acidity of Pd⁺ is postulated as the first step in the mechanism of C-H bond activation, leaving behind the hydrocarbon fragment with an appreciable amount of carbenium ion character in the reaction intermediate.¹¹⁹ Os⁺ has only been studied with propane and butane, where once again multiple dehydrogenation occurs and small alkanes are formed.¹²⁴ Au⁺ shows an exceptional behavior which is completely different from the other metal ions studied. Mainly H⁻ abstraction with concomitant AuH formation is encountered (93% for C_3H_8 and 99% for C_5H_{12} and larger *n*-alkanes), with only very small amounts of H_2 loss in addition.¹¹ From the three lanthanide ions studied so far, only Gd⁺ reacts with alkanes; dehydrogenations and small amounts of alkane and alkene losses are observed. Gd+-dialkyl species are assigned on the basis of labeling experiments, and dehydrocyclization of C_6H_{14} to benzene is noted. The reactivity of Gd⁺ in contrast to Pr⁺ and Eu⁺ is explained by the necessity of f-electron involvement in bonding for the latter ions.¹⁰³

C. Branched Alkanes

Compared to the linear alkanes, the reactions of bare metal ions with branched alkanes have been much less exploited. The majority of the studies employed two prototypical compounds, 2-methylpropane (isobutane) and 2,2-dimethylpropane (neopentane). The former is the very first representative of a branched alkane while the latter is unique in that no β -hydrogen atoms are available following C-H insertion.

Once again the interest has focused on the group 8–10 metal ions Fe⁺, Co⁺, and Ni⁺. Upon reaction with isobutane two products are formed, molecular hydrogen and methane, $^{61,65,73-76,96,156,175,180,181,187}$ with the commonly accepted mechanism given in Figure 10 (R = H). Initial C-H or C-C insertion is followed by reductive elimination of H₂ or CH₄. This mechanism is supported by high-energy CID results, which verify the structure of 20,⁷⁴ and labeling results for (CH₃)₃CD. Exclusive loss of HD and CH₄ is observed for this compound, 175,180 and the HD loss (eq 25) has therefore been used to serve as a reference spectrum for 1.2 eliminations in kinetic energy release distributions (see above).^{75,76}

With neopentane only methane loss is observed in the reactions with Fe⁺-Ni^{+.86,156,177,178,180,181,188} The same mechanism (Figure 10, R = CH₃) is assumed to be operative, in line with low-energy CID studies in an FTICR instrument which support the structure of **32**, viz. isobutene complexes.^{177,178} As already mentioned above, C-H insertion would afford an intermediate lacking β -hydrogens, and hence, the absence of H₂ loss may be taken as an indication for the unfavorableness of α - or γ -hydrogen shifts for these metal ions. For the other branched alkanes studied, similar mechanisms as the one in Figure 10 were sufficient to explain the observed products.^{86,156,180} Exceptions were only observed for highly branched alkanes, e.g. 2,2,3,3-tetramethylbutane. Loss of H₂ from this alkane was formulated as a 1.4 elimination, furnishing a cobaltacyclopentane.^{86,181}

Figure 10. Mechanism for the reactions of the group 8-10 metal ions Fe^+-Ni^+ with 2-methylpropane (R = H) and 2,2-dimethylpropane (R = CH₃).

Deuterium and ¹³C labeling was employed to get further information, and it could be shown that Ni⁺ selectively inserts into the weakest C–C bond present in the alkane.¹⁸⁰ β -Methyl shifts were invoked for Fe⁺ in a few cases while none were observed for Co⁺ or Ni⁺.¹⁸⁰

The already noted tendency of the early transition metal ions for C-H activation is also found with branched alkanes. However, the reactions of Sc^+ with $(CH_3)_3$ CD in an ion-beam instrument and with a kinetic energy of 0.5 eV are unspecific as losses of H_2 and HD, $2H_2$, and H_2/HD , and C_2H_3D besides C_2H_4 are observed.⁷⁹ This result has been interpreted again with the combined operation of 1.2 and 1.3 eliminations as well as β -methyl shifts. 0.5-eV-Sc⁺ reacts with neopentane by loss of H_2 , presumably in a 1.3 elimination.⁷⁹ Ti⁺ mainly gives rise to multiple dehydrogenations with only small amounts of C-C cleavage products observed, and rearrangements of the carbon skeleton were most likely involved.^{65,155,156} Eliminations mainly proceeded as 1.2, but some 1.3 losses were also proposed, yet, could not be distinguished from scrambling processes.¹⁵⁵ V⁺, while still favoring C-H activation, does not give rise to multiple dehydrogenations as extensively as Ti⁺, and it is also more selective;^{112,155} upon reaction of V⁺ with $(CH_3)_3CD$ only HD is lost.¹⁵⁵ Although β -methyl shifts were proposed to explain the observed reactivity with neopentane,¹¹² the cross sections for the reported losses were extremely small so that the possibility of excited states being responsible for the products was made highly likely.¹⁵⁵

As with other alkanes, Cr^+ , Mn^+ , Cu^+ , and Zn^+ are unreactive with the branched compounds, i.e., they do not exothermically react to form any other products besides adduct complexes in (probably mostly) termolecular reactions.^{65,68a,73,181,187,189–190} Endothermic reactions have been studied, however, for Mn^+ , Cu^+ , and Zn^+ . High-energy CID upon $Cu(i-C_4H_{10})^+$ complexes, formed by the "FAB method"⁶⁸ (see section II), resulted in the losses of H_2 , CH_4 , as well as of neutral CuH, forming the $t-C_4H_9^+$ cation.^{68a} Ion-beam experiments of Cu⁺ with isobutane and neopentane produced organic products, see eqs 27 and 28 for the case of C_4H_{10} , but also led to the formation of the adduct complexes (eq 29).¹⁸⁸

$$Cu^+ + i - C_4 H_{10} \rightarrow C_4 H_9^+ + CuH$$
 (27)

$$\rightarrow C_3 H_7^+ + CuCH_3 \qquad (28)$$

$$\rightarrow CuC_4 H_{10}^+ \tag{29}$$

Low-energy CID upon the $Cu(i-C_4H_{10})_n^+$ complexes (n = 1; 2) afforded exclusively loss of the intact isobutane moieties, thus demonstrating that these are indeed van der Waals adducts.¹⁸⁷ Surprisingly, the adduct formation was found to proceed bimolecularly.¹⁸⁸ Equations 27 and 28 and also analogous reactions with Co^{+,188} Ni^{+,188} and Mn⁺¹⁸⁹ were used to determine the $D^{\circ}(M-H)$, $D^{\circ}(M-CH_3)$ and, using eq 32 below, $D^{\circ}(M^{+}-CH_{3})$ bond dissociation energies. Ion-beam studies of Zn^+ with several alkanes CH_3R , including R = $i-C_3H_7$ and $t-C_4H_9$, have similarly been used to determine $D^{\circ}(Zn^+-CH_3)$ and $D^{\circ}(Zn-CH_3)$ data.¹⁹⁰ Estimated stabilities of intermediates were used to show that the reactions of Cu⁺ do not proceed via insertion but most plausibly via heterolytic cleavage.¹⁸⁸ On the contrary, the reactions of Co⁺ and Ni⁺, ¹⁸⁸ as well as of Mn^+ ,¹⁸⁹ with *i*-C₄H₁₀ and *neo*-C₅H₁₂ are believed to proceed via the insertion intermediates 28 and 30 (Figure 10). For Co⁺ and Ni⁺, the exothermic pathways to 20 and 32 are open, so that the endothermic decompositions of the C-H or C-C insertion products via eqs 30-33 are not competitive at low energies and are only observed at higher energies. Mn⁺ exclusively reacts by cleavage of the M-R bond (eqs 30-33).

$$H-M^+-R \to H-M^+ + R \tag{30}$$

$$\rightarrow H-M + R^{+}$$
(31)

$$CH_3 - M^+ - R \rightarrow CH_3 - M^+ + R \tag{32}$$

$$\rightarrow CH_3 - M + R^+ \tag{33}$$

The branching ratio between eqs 30 and 31 and eqs 32 and 33, respectively, reflects the different ionization energies (IE's) of the two cleavage products MH (MCH_3) and R. The bond dissociation energies (BDE's)and the IE's of the particles involved are related to each other by eq 34. For example, $MnCH_3$ has a relatively IE (MR) + $D^{\circ}(M^{+}-R) = IE (M) + D^{\circ}(M-R)$ (34)low BDE, $D^{\circ}(Mn-CH_3) = 0.4-1.3 \text{ eV}$,¹⁸⁹ while $D^{\circ}(Co (CH_3) = 1.99 \text{ eV}.^{188}$ As the IE's of Mn and Co and the $D^{\circ}(M^{+}-CH_{3})$ bond dissociation energies are comparable, it follows from eq 34 that $MnCH_3$ has a lower IE (5.6 eV^{189}) and CoCH₃ a higher IE (7.7 eV^{188}) than the $t-C_4H_9$ radical (6.70 eV). Hence, Mn⁺ reacts with neopentane mainly to MnCH₃⁺,¹⁸⁹ while the endothermic reactions of Co⁺ mainly give $t-C_4H_9^{+.188}$ Numerous theoretical studies concerning $D^{\circ}(M-H)^{93g,j,l-n,p-r,w,94b,c,96,167q,r,v,ae,an,ao,191,192}$ and $D^{\circ}(M-H)^{93g,j,l-n,p-r,w,94b,c,96,167q,r,v,ae,an,ao,191,192}$ $(CH_3)^{93r,94c,96,146,193,194}$ have also been reported; the agreement to thus or otherwise¹⁹⁵⁻¹⁹⁷ experimentally derived data varies, however, depending upon the level of calculation. The *intrinsic* $D^{\circ}(M-H)$ and $D^{\circ}(M-CH_3)$ BDE's have been determined to 54 and 49 kcal mol^{-1} thus the charge is not influential for the hydrogen bonding, but is important for the methyl bonding (c.f. intrinsic $D^{\circ}(M^+-H) = 56$ kcal mol⁻¹ and $D^{\circ}(M^+-CH_3)$ $= 60 \text{ kcal mol}^{-1}$.^{43g}

The behavior of the second- and third-row ions toward branched alkanes is very similar to the chemistry already described for the linear representatives. Y⁺ and La⁺ upon reaction with isobutane and neopentane once again demonstrate their preference for C-H activation as two molecules of H_2 are lost, respectively.¹¹³ The products generated are assigned to trimethylenemethane complexes on the basis of CID experiments. In addition, $\hat{Y}(CH_3)_2^+$ and $La(CH_3)_2^+$ are formed in minor amounts from both compounds. 2,2- and 2,3dimethylbutane with both of the group 3 ions lose mainly CH_4/H_2 .¹¹³ The products have not been characterized further but isoprene complexes are not unlikely in view of the structures of the precursors. Quite similar, Nb⁺ and Ta^{+,114,125} as well as $Mo^{+,157}$ also mainly form multiple dehydrogenation products from $i-C_4H_{10}$ and $neo-C_5H_{12}$, and the CID spectra of the NbC₄H₈⁺ complex formed from i-C₄H₁₀ are different from those of Nb(butadiene)⁺, just as in the case of Y^+ and La^{+.114} The only significant C-C cleavage product is due to loss of $CH_4/2H_2$ observed in the reaction of Ta⁺ with neopentane.^{114,125} In an ion-beam experiment, the reactions of Ru⁺, Rh⁺, and Pd⁺, each possessing 0.5 eV of kinetic energy, with several branched alkanes have been studied.¹¹⁹ While Ru^+ and Rh^+ behave quite similar, Pd^+ is slightly different. With $i-C_4H_{10}$, the former two ions generate mainly H_2 and $2H_2$, and by deuterium labeling the single dehydrogenation has been shown to be mainly a 1.2 elimination, albeit with ca. 20% scrambled products observed. Pd⁺ in a specific 1.2 elimination exclusively forms the single dehydrogenation product. With $neo-C_5H_{12}$, Pd⁺ generates exclusively methane while with the other two ions, in addition, multiples of H_2 as well as CH_4/H_2 are observed.¹¹⁹ The $RhC_4H_8^+$ ion formed from *i*- C_4H_{10} has been formulated as a hydrido-metal-2-methylallyl complex according to H/D exchange experiments with D_2 in an FTICR instrument.¹¹¹ While branched alkanes such as 2-methylbutane and 2,3-dimethylbutane are

only doubly dehydrogenated by Rh⁺ and no C–C cleavage products arise, alkanes which lack β -hydrogen atoms after insertion of Rh⁺ into certain C–H bonds, e.g., neopentane and neohexane, do indeed also produce methane and methane combined with H₂. This has been explained with carbon skeleton rearrangements in cases where β -H shifts are impossible.¹¹¹ As with linear alkanes, Au⁺ reveals an unique behavior that is completely different from the other transition-metal ions studies so far.¹¹ Hydride abstraction is observed for *i*-C₄H₁₀ and, quite unusual, methanide abstraction leading to AuCH₃ and C₄H₉⁺ is the exclusive reaction with *neo*-C₅H₁₂.

In the case of the lanthanide ions, Pr^+ and Eu^+ , just as with the linear alkanes, only form adduct complexes with branched alkanes while Gd⁺ induces (multiple) dehydrogenations as well as CH₄ loss in combination with dehydrogenations.¹⁰³ The dehydrogenation and the also observed Gd(CH₃)₂⁺ formation from (CH₃)₃CD are unspecific, so unfortunately no further mechanistic conclusions could be gained.¹⁰³

D. Cycloalkanes

Cycloalkanes have been studied relatively thoroughly as insertions of the metal ions into C-C bonds will give rise to metallacycles¹⁹⁸ for these substrates. Especially cyclopropane is of particular interest in that respect as the inherent ring strain weakens the C-C bonds and should favor insertions to form metallacyclobutanes. Metallacyclobutanes are proposed as intermediates for olefin metathesis,¹⁹⁹ for the cyclopropanation of alkenes,²⁰⁰ in transition-metal-catalyzed rearrangements of strained carbocyclic rings,²⁰¹ for the polymerization of alkenes by Ziegler-Natta catalysts,²⁰² and in Fischer-Tropsch synthesis.²⁰³ Therefore they have formed the object of many theoretical^{96,97e,204} and experimental studies in traditional organometallic chemistry. An ever-increasing number of metallacyclobutanes has been isolated and characterized since the discovery of the first platinacyclobutanes,²⁰⁵ and today examples are known for several different metals.²⁰⁶

Yet, Fe⁺, Co⁺, as well as Ni⁺ are unreactive with cyclopropane; under ICR conditions no exothermic products are observed.^{156,207} The *endothermic* reaction to metal alkylidenes (metal carbenes) and ethene (eq 35) has been studied, however, for several metal ions in ion-beam instruments, i.e., for Cr⁺,²⁰⁸ Mn⁺,¹⁸⁹ Co⁺,²⁰⁹⁻²¹¹ Ni⁺,^{211,212} and Cu⁺,²¹¹ and Co⁺ in an FTICR instrument as well.^{341,213} The reaction in eq 35 has been

$$M^+ + c - C_3 H_6 \rightarrow M^+ = C H_2 + C_2 H_4$$
 (35)

used to derive $D^{\circ}(M^+-CH_2)$ data, which can be compared to those from other reactions, e.g., from eqs 5 or 11, to ensure that no activation barriers in excess of the endothermicity are present. Formation of the metal alkylidenes is explained by the mechanism in Figure 11. The so far generally accepted mechanism assumes C-C insertion to form the metallacyclobutane 33, which, in analogy to conventional organometallic chemistry,^{198,199,206a} cleaves to afford 34 that decomposes to the alkylidene $35^{93d,f,94c,109g,144}$ and ethene. Recently, this mechanism has been questioned by Armentrout and co-workers who argue that the conversion of 33 to 34 is a symmetry-forbidden [2 + 2] reaction; rather, these authors favor the alternative pathway via the radical Organometallic Chemistry in the Gas Phase

Figure 11. Generalized mechanism for the formation of alkylidene ions from the reaction of transition-metal ions M⁺ with cyclopropane.

Figure 12. Mechanism for the reactions of group 8-10 transition-metal ions Fe⁺-Ni⁺ with cyclobutane.

intermediate 36.^{189,211} Theoretical studies show, however, that the anticipated large activation barriers for Woodward-Hoffmann-forbidden retro-[2 + 2] reactions in case of Cp₂TiC₃H₆ furnishing Cp₂TiCH₂(C₂H₄) (Cp = η^5 -C₅H₅),^{204e} or for the Cl₂TiC₃H₆ analogue,^{204h} are in fact nonexistent due to 3d orbital participation.

 $MC_3H_6^+$ (M = Fe, Co) complexes, formed via ligand exchange of c-C₃H₆ with FeCO⁺ in the ion source of a sector-field instrument, apparently behave differently. While FeC₃H₆⁺ possesses the stable ferracyclobutane structure 33, the analogous cobaltacyclobutane at least partly rearranges to the more stable cobalt-propene structure 13.²¹⁴ The same result is obtained for the $MC_3H_6^+$ ions (M = Fe-Ni) formed by decarbonylation of cyclobutane; here as well the cobalta- and nickelacyclobutane ions rearrange (see section VII.C).

In contrast to their behavior toward c-C₃H₆, Fe⁺, Co⁺, and Ni⁺ do undergo exothermic reactions with c-C₄H₈.^{180,207,209} The losses of H₂ and C₂H₄ proceed via initial C-C insertion furnishing 18 (Figure 12), which decomposes either by symmetric ring cleavage and loss of ethene from 17, or by a β -hydrogen shift which eventually leads to the butadiene complex 39 and molecular hydrogen. Decompositions of metallacyclopentanes by symmetric cleavage are well-precedented in conventional organometallic chemistry;²¹⁵ similarly, the transformation 18 \rightarrow 37 \rightarrow 19 finds its parallel in the reductive elimination of alkenes from metallacyclopentanes, which also proceed by initial β -H shift.^{198,216} The structure of **39** has been probed in CID experiments, and the irreversibility of $18 \rightarrow 17$ has been demonstrated by CID on independently generated 17 which revealed no loss of H_2 .^{179,207} This latter finding contrasts the solution chemistry of alkenes, where complexes analogous to 17 and 18 are in equilibrium.^{198,206q,216,217} Loss of H_2 does not proceed by a second β -H shift from 37; instead, 37 rearranges to the butene complex 19. In 19, an allylic C-H bond is activated, and the resulting intermediate 40 is not only the precursor to 38, but also serves to equilibrate the hydrogen atoms of the C_4H_8 moiety. Evidence for this comes from deuterium-labeling studies, employing cyclopentanone- α, α' - d_4 , which, via decarbonylation, also yields 18 (see above and below). CID on the thus generated d₄-labeled 18 shows complete equilibration of all hydrogen atoms, but exclusive loss of $C_2H_2D_2$.^{207,218}

The gas-phase chemistry of cyclopentane with Fe⁺-Ni⁺ parallels that of its lower homologue; while Fe⁺ mainly dehydrogenates c-C₅H₁₀, Co⁺ and Ni⁺ additionally produce significant amounts of C₂H₄ and C₃H₆.^{76,156,179,180,207,209,218,219} For Co⁺, methane is also a minor product.^{207,209,218} The presumed mechanism, presented in Figure 13, has been substantiated with several mass spectrometric techniques. Kinetic energy release distributions (KERD's) have been employed to show that the dehydrogenation (not shown in the figure) for Fe^{+ 219b} and Co^{+ 76} proceeds as a simple 1.2 elimination, i.e., without preceding C-C cleavage, and

Figure 13. Mechanism for the reactions of group 8-10 transition-metal ions Fe⁺-Ni⁺ with cyclopentane.

for Fe⁺ the same could be demonstrated by comparison with reference CID spectra.¹⁷⁹ The remainder of the products arises from initial rearrangement to an acyclic pentene complex, most likely via initial C-C insertion. The isomerization of the metallacyclohexane 41 to 42 might well be achieved analogous to $18 \rightarrow 19$ in Figure 12. 1-Pentene^{207,218,219a} as well as 2-pentene⁷⁶ have been suggested for the acyclic intermediate en route to CH₄, C₂H₄, and C₃H₆, based on KERD^{76,219a} and CID experiments.^{207,218}

The identity of the C_3H_6 neutral which is lost, as well as the structure of the $CoC_3H_6^+$ ion left behind after the loss of C_2H_4 , have been elucidated further. The metal-bound hydrogen atom in 45, which is produced after allylic C–C insertion and β -H shift from 42, could be transferred to one of the outer, or to the central, carbon atom(s) of the allyl ligand; the latter opens up the possibility of cyclopropane elimination and cobaltacyclobutane formation. While on energetic grounds, by using estimated binding energies of the intermediates, the elimination of $c-C_3H_6$ can already be discarded,²⁰⁹ the KERD data in addition convincingly demonstrates that exclusively propene is lost and also retained in the $CoC_3H_6^+$ complex.^{76,219a} Thus, 46 is an intermediate and hence, phase-space theory could be used to derive $D^{\circ}(Co^+-propene)$ and $D^{\circ}(Co^+-C_2H_4)$ dissociation energies.^{76,219a} Interestingly, $Co(C_5H_{10})^+$ complexes, formed directly from Co⁺ and 1-pentene, and therefore containing more internal energy, show a composite curve for the C_3H_6 elimination, demonstrating that propene and cyclopropane are lost.^{214,219a}

Cyclohexane is dehydrogenated up to three times by $Fe^{+42g,166,179,207,218,219b}$ Co^{+33z,76,207,209,218} and Ni^{+,180,207,218} the final products being benzene complexes. Small amounts of C–C cleavage products are also observed for Co⁺ and Ni^{+,33z,180,207,209,218} Methylcyclopentane and -hexane have also been studied with Fe⁺–Ni⁺, but this resulted only in loss of methane combined with dehydrogenations.^{156,180,207} ²H and ¹³C labeling showed that the demethanation is a 1.2 process and exclusively involves the methyl groups while single dehydrogenation produces mainly endocyclic double bonds for both substrates reacting with 0.5-eV-Ni⁺.¹⁸⁰ Fitting the KERD data according to phase-space theory suggests a barrier for the reverse of the single dehydrogenation of cyclopentane and -hexane, i.e., addition of H₂ to the cycloalkene complexes.^{219b}

The amount of C-H activation by Fe⁺ in cycloalkanes decreases once again; cyclooctane and cyclononane exclusively form C-C cleavage products.³⁵ⁱ This has been rationalized by assuming linear C-Fe⁺-C intermediates; smaller cycloalkanes are unable to accomodate the hereby induced ring strain and hence only produce C-H activation products. Sc^{+,42g,113} Ti^{+,156} and V^{+105,112} mainly give rise to (multiple) dehydrogenations in their reactions with several cycloalkanes and show exothermic reactions even with cyclopropane, producing mainly H₂ and smaller amounts of CH₄. All of the second- and thirdrow metal ions studied also react with c-C₃H₆; here as well, dehydrogenation is the dominant reaction observed for Y^{+,113} Nb^{+,114} Ta^{+,114} Mo^{+,157} Rh^{+,111,140} and the lanthanide ion Gd^{+,103} The MC₃H₄⁺ ions that arise have been formulated as allene complexes, hence ringopened species that arise from metallacyclobutane decompositions. A different behavior was noted for La⁺, that mainly produced LaCH₂⁺ ions with c-C₃H₆,¹¹³ and Au⁺, that formed the hydride-abstraction product and an AuC₃H₆⁺ adduct complex proposed to have the metallacyclobutane structure.¹¹

In reactions with other cycloalkanes, most of the heavier ions once again demonstrated their preference for C-H activation; multiple dehydrogenations and losses of small alkanes and alkenes together with H₂ were the only processes observed.^{103,111,113,114,157} Notable is an obvious inability of La⁺, in contrast to its congener Y⁺, to insert into C-C bonds; e.g., double dehydrogenation of c-C₄H₈ produces the cyclobutadiene complex, which in part decomposes into acetylene units (eq 36).¹¹³ The same mechanism has been postulated for Sc⁺,^{341,220} while Y⁺ is believed to initially insert into a C-C bond.¹¹³ NbCp⁺ ions are formed from the reactions of

$$Nb(c-C_4H_4)^+ \rightarrow NbC_2H_2^+ + C_2H_2 \qquad (36)$$

Nb⁺ with c-C₅H₁₀, one of the rare cases where a *radical* is lost in an exothermic gas-phase organometallic reaction.¹¹⁴ Highly unsaturated hydrocarbons are produced by Nb⁺ and Ta⁺ (eqs 37 and 38), but unfortunately no further information concerning their structure is available.¹¹⁴

$$M^+ + c - C_3 H_6 \rightarrow M C_3 H_2^+ + 2 H_2$$
 (37)

$$M = Nb, 65\%; M = Ta, 81\%$$

$$M^{+} + c-C_{4}H_{8} \rightarrow MC_{4}H_{2}^{+} + 3H_{2} \qquad (38)$$

$$M = Nb, 9\%; M = Ta, 14\%$$

As with most other alkanes, Au⁺ only forms neutral AuH from $c-C_5H_{10}$ and $c-C_6H_{12}$.¹¹

V. Reactions of Bare Metal Ions with Unsaturated Hydrocarbons

A. Alkenes

Ethene and propene are unreactive with late transition metal ions. Cr^+ ,²⁰⁸ Fe⁺,²²¹ Co⁺,^{341,210,213,222,223} and Ni^{+ 33m,r,222} only form adduct complexes under ICR conditions and show no exothermic reactions in ionbeam experiments. High-energy CID upon FeC₂H₄⁺ or FeC₃H₆⁺, formed in the ion source of sector-field instruments from the reaction of Fe(CO)_x⁺ with the alkenes, reveals that the ligands are present as intact molecules, with Fe⁺ being the by far dominant product ion in the spectra.^{74,179} As shown for other substrates, high abundances of ligand-detachment signals, i.e., loss of the complete ligand to form M⁺, in CID or metastable-ion spectra generally reveal the inability of the metal ion M⁺ to activate the substrate.²²⁴ The endothermic reactions in eqs 39 and 40 have been studied in ion-beam instruments to derive BDE's for V⁺,¹⁶⁰ Cr⁺,²⁰⁸ Co⁺,^{210,223} and Ni⁺.²¹² The threshold for CoCH₂⁺ formation has also been determined with an FTICR instrument.^{341,213} The metal-alkylidene product ion is

$$M^+ + C_2 H_4 \rightarrow MCH_2^+ + CH_2$$
(39)

$$\rightarrow \mathrm{MH^{+}} + \mathrm{C_{2}H_{3}} \tag{40}$$

believed to be formed via a direct abstraction mechanism since the intermediacy of a bis(alkylidene) ion, $M(CH_2)_2^+$, seems quite unlikely.²⁰⁸ Interestingly, fluorine substitution substantially weakens the metal-alkylidene bond energy.²¹²

Exothermic reactions of ethene and propene are, however, observed for early first row and heavier transition metal ions as well as for lanthanides. The dehydrogenation of ethene by Sc⁺ generates an acetylene complex as evidenced by CID and by the exclusive loss of HD in the reaction with CH_2CD_2 .^{341,220} V⁺ is also observed to exothermically dehydrogenate ethene.^{160,161b} The ScC₃H₄⁺ ion formed in the reaction with propene exchanges up to four hydrogen atoms with C₃D₆ and has therefore been formulated as an allene complex,^{341,220} yet, thermochemical arguments are in favor of a propyne complex.¹⁶⁴ Although the reactions of Ti⁺ with C_2H_4 and C_3H_6 have not been studied directly, there is indirect evidence available from ion-beam experiments with *ethane* and *propane* that at least ethene can be exothermically dehydrogenated.¹⁵²

Exothermic dehydrogenations of ethene and propene have further been observed for Nb⁺, ¹¹⁴ Ta⁺, ²²⁵ Os⁺, ¹²⁴ Pr⁺, ¹⁰³ which was unreactive with alkanes, and Gd⁺. ¹⁰³ Interestingly, the Nb(C₂H₂)⁺ complex generated from C₂H₄ is observed to react five more times with C₂H₄, and, by ligand coupling, ²²⁶ finally Nb(benzene)₂⁺ is formed; ¹¹⁴ Ta⁺ even reacts sequentially with 10 C₂H₄ molecules. ²²⁵ Au⁺ forms only the adduct complex with C₂H₄, and with propene, besides AuC₃H₆⁺, AuH is once again formed. ¹¹

For the three linear butene isomers, loss of H_2 is the exclusive or by far dominating reaction with Fe⁺-Ni⁺ and leads to butadiene complexes.^{74,179,221-223} This contrasts the behavior of 2-methylpropene (isobutene), which is insofar unreactive with Fe⁺ as it forms exclusively the adduct complex,^{74,179,221} but which is exothermically dehydrogenated by Co⁺ and Ni⁺.^{222,223} Loss of H_2 accounts for 96% of the products for both metal ions; in addition C_2H_4 and, for Ni⁺ only, CH_4 are also observed. The nature of the $MC_4H_6^+$ ions (M = Co, Ni) generated from isobutene has been further probed by CID and H/D exchange experiments.²²² CID affords exclusively M^+ , while four fast and two slow H/D exchanges were observed with C_3D_6 . An identical behavior was found for the $MC_4H_6^+$ ions generated from 1-butene so that it was concluded that in this case, too, butadiene complexes were formed; the mechanism for this rearrangement still remains to be established. $FeC_4H_6^+$ from 1-butene could be distinguished from $FeC_4H_6^+$ formed by 30-eV electron impact on (trimethylenemethane) $Fe(CO)_3$ by means of CID, photodissociation, and ligand-exchange experiments.¹⁰⁵

In an 1981 ion-beam study on the reactions of Co⁺ with several alkenes, Beauchamp and co-workers were able to present evidence that the insertions of the metal ions into the various bonds do not proceed at random; rather, the double bond directs this addition to the

Figure 14. Potential energy surface for the reaction of transition-metal ions M^+ with 2-pentane (adapted from ref 228).

allylic C-C bond.²²³ This proposal was largely based on the study of the six pentene isomers which all generate H_2 , CH_4 , C_2H_4 , and C_3H_6 upon reaction with Co⁺. The formation of alkadiene complexes by loss of H_2 and CH_4 is favored for all pentenes, except for 1-pentene which is preferentially cleaved to C_2H_4 and C_3H_6 . The dominant loss of ethene from 1-pentene was explained by initial allylic C–C insertion, $42 \rightarrow 44$ (see Figure 13), β -hydrogen transfer, 44 \rightarrow 45, and rearrangement to the diligated complex 46, which mainly loses the smaller alkene, furnishing 13. The loss of ethene and propene from the other pentenes is explained by initial isomerization to the 1-pentene complex 42. H_2 and CH_4 may be formed by allylic C-H or C-C insertion followed by β -hydrogen shift and reductive elimination from all isomeric pentenes, either directly or after isomerization by double-bond migration.²²³

Subsequently, the chemistry of small alkenes has been studied in more detail by several groups with Fe⁺,^{179,219b,221,227} Co⁺,^{214,219a,222,227,228} and Ni⁺,^{222,227} and in particular the reactions of 1-pentene have been studied in great depth. In general, the three metal ions once again showed similar reactivity although it could still be noted that the abundance of dehydrogenated products decreased in the row Co⁺ > Fe⁺ > Ni⁺.²²² The preferential insertion of Co⁺ into allylic C–C bonds over allylic C–H bonds, which was already deduced from the early ion-beam experiments, could be convincingly demonstrated and shown to be even highly selective when infrared multiphoton dissociation (IRMPD) is employed as a means to activate stable Co(C₅H₁₀)⁺ adducts, formed by ligand-exchange processes in an ICR instrument.²²⁸ Thus, while the pentene isomers gave rise to rather similar product distributions in the ionbeam experiment, IRMPD gives exclusively C_2H_4 from $Co(1-pentene)^+$ and exclusively CH_4 from the other isomers. Yet, these pentenes could still easily be distinguished as the photodissociation spectra were found to be different. Known thermochemical data combined with the results of the IRMPD experiments were then used to derive the potential-energy surfaces for the reactions. An example is given in Figure 14 for 2pentene, demonstrating that the production of CH_4 is the lowest energy pathway for this system.²²⁸

As already mentioned above (section IV.D), the *direct* reaction of Co⁺ with 1-pentene gives rise to a bimodal kinetic energy release distribution for the loss of C_3H_6 , with a high-energy component for loss of cyclopropane and a low-energy component for loss of propene.^{214,219a} $Fe(1-pentene)^+$ gave a similar result with a broadened KERD curve.²¹⁴ Fitting the kinetic energy release distributions for the loss of C_2H_4 to the experimental data allowed the determination of the branching ratio between 46 and 47, respectively 13 and 33 (Figure 13). Good fits were obtained if it was assumed that 67% cobaltacyclobutane and 50% ferracyclobutane ions were formed, corresponding to 33% and 50% propene complexes, respectively. Reductive elimination of $c-C_3H_6$ from metallacyclobutanes is a common decomposition mode in the condensed phase, too.^{199,206a,229} KERD data for the dehydrogenation of cyclopentene and -hexene was used to derive bond dissociation energies for cy-

Figure 15. Generalized mechanism for the allylic cleavage of alkenes by transition-metal ions M⁺.

clopentadiene and 1,3-cyclohexadiene.^{219b} No barrier for the reverse process was observed for the two 1,3-dienes, contrary to the alkene complexes,^{45,75,76} but in line with the observation of H/D exchange in $\rm FeC_5H_6^+$ using D₂.²⁰⁷

Gross and co-workers observed that the products of the allylic C-C insertions were dominating over the products of double-bond isomerizations via reversible allylic C-H insertion in the high-energy CID spectra of Fe(alkene)⁺ complexes.¹⁷⁹ After isomerization to the bis(alkene) complexes 57 and 58, according to the general mechanism in Figure 15, the stronger bound alkene, i.e., the *larger* one, is preferentially retained so that loss of the smaller alkene corresponds to the base peak in the CID spectra.¹⁷⁹ The analytical utility of this finding was recognized and applied to locate the positions of the double bonds in several decenes, fatty acid esters and alkenyl acetates,²³⁰ as well as for mixture analysis.²³¹ That indeed 57 and 58 were formed could be shown by high-energy CID, which revealed that 1-alkene as well as 2-alkene complexes were produced upon loss of RCH=CH₂; 57 prevails, however.²³²

Only few studies are available which deal with the reactions of other metal ions toward alkenes. As with alkanes, Cr⁺ and Mn⁺ were found to be unreactive,^{157,227} and Zn⁺ is also not observed to activate any bonds, but it is seen to undergo charge transfer to 1-pentene instead.²²⁷ In light of the latter findings, it is surprising that Cu⁺, also unreactive with alkanes, was observed to react similar to Fe^+-Ni^+ , with C_2H_4 being the dominant product in the reaction with 1-pentene besides H_{2} , CH_4 , and C_3H_6 .²²⁷ With some other alkenes, Cu^+ also activates predominantly the allylic C–C bond. Ti^{+,152,227,233} V^{+,105,227} Nb^{+,114} Mo^{+,157} as well as Gd⁺ and Pr^{+103} mainly give rise to (multiple) dehydrogenations and combined losses of H_2 with CH_4 or C_2H_4 in their reactions with several alkenes, whereas Eu⁺ is unreactive.¹⁰³ The structure of the multiple dehydrogenation products is mostly unknown, formation of en-yne systems, dehydrocyclizations, and C-C cleavages to afford bis(alkyne) complexes have been proposed.

Some more detailed information is available for Sc⁺, which has been studied with several linear, branched, and cyclic alkenes.^{341,164,220} As with the other early and higher row transition-metal ions, Sc⁺ mainly dehydrogenates alkenes, but small amounts of C-C cleavages are also observed.^{341,220} The relative importance of the C-C cleavage products increases with branching and with increased chain lengths. H₂ can be produced either by insertion into an allylic C-H bond followed by β -H shift from a homoallylic position or vice versa; allylic C-H activation precedes, as is indicated by the predominant loss of CH₄ from 2,2-dimethylbutene, which lacks allylic C-H bonds. $ScC_4H_6^+$ ions are produced from linear butenes as well as from isobutene; the former ions are butadiene complexes (ScBD⁺), while in the latter reaction the trimethylene methane complex (ScTMM⁺) is formed. This is evident from CID experiments, where ScTMM⁺ shows slightly less loss of H_2 as does ScBD⁺, from ion/molecule reactions with C_6H_6 and CH_3CN , where $ScBD^+$ yields exclusively condensation and ScTMM⁺ 50% condensation and 50% dehydrogenation, and finally from H/D exchange experiments with C_3D_6 , where ScBD⁺ undergoes four rapid and two slow and ScTMM⁺ six slow exchanges. It is interesting to compare this result to the analogous experiments with Co⁺ and Ni⁺, where exclusively MBD⁺ complexes were formed from all the butenes (see above). Unfortunately, scrambling is observed in the dehydrogenation of isobutene- d_3 , so that no mechanistic conclusions could be gained. Cyclic alkenes undergo exclusive dehydrogenation, but the CID spectra of the products are different from those of the same formula produced from acyclic precursors. Different H/D exchange results are also obtained which both reveals that dehydrocyclization can be excluded for the multiple H_2 losses from acyclic alkenes.^{341,220} In contrast, thermochemical data was used to propose a metallacyclopentadiene structure for the $ScC_4H_4^+$ ion from dehydrogenation of cis- and trans-butene.¹⁶⁴

B. Alkynes

The gas-phase chemistry of alkynes with transitionmetal ions resembles that of the alkenes; in analogy to the allylic C-C cleavage that is observed in the highenergy CID spectra of Fe(alkene)⁺ complexes, for the Fe(alkyne)⁺ ions cleavage of the propargylic C-C bond is the dominant fragmentation pathway. This was used to distinguish the isomeric octynes.^{230,231} CID studies revealed the identity of the two cleavage products by comparison with reference spectra from complexes that were formed by ion/molecule reactions in the ion source.^{230,232} While exclusively 1-alkenes were produced by the β -hydrogen shift from the insertion product 60 (Figure 16), the termination of this very hydrogen atom can be either the C(1) or the C(3) position of the propargylic fragment, forming 2-alkynes or 1,2-alkadienes, respectively; formation of allenes, i.e., intermediate 62, is favored, though.

Deviations from the generalized mechanism in Figure 16 seem to occur in cases when the chain length of the

Figure 16. Generalized mechanism for the propargylic cleavage of alkynes by transition-metal ions M⁺.

Figure 17. Generalized scheme for the remote functionalization of distant methyl or methylene groups by bare transition-metal ions M^+ , complexed to the functional group X of the organic substrate.

alkyne is not sufficient to permit the insertion of Fe⁺, or if the alkyl fragment in 60 lacks β -hydrogen atoms. So, although $Fe(propyne)^+$ can be distinguished from Fe(allene)⁺, both complexes undergo mainly ligand detachment, i.e., reformation of Fe⁺, upon high-energy CID;²³² hence, the ligands are not activated.²²⁴ The same applies to several $Fe(C_4H_6)^+$ complexes, which are, however, believed to be partly in equilibrium with each other.²³² In line with Figure 16, Fe⁺ forms ethene and C_3H_4 , probably allene, from 1-pentyne, but for 2-pentyne no β -hydrogen atoms are available after propargylic insertion, so that Fe(2-pentyne)⁺ therefore first isomerizes to pentadiene complexes, which subsequently can decompose to $FeC_2H_2^+$ and $FeC_3H_6^+$. Similarly, 3-hexyne first isomerizes to 2-hexyne, for which loss of C_2H_4 is possible.²³²

Much more detailed insight about alkyne activation by late transition metal ions was gained by employing ²H-labeled compounds. In doing so, it was possible to confirm the general mechanism (Figure 16) for the reactions of Fe⁺ with 3-octyne; in the case of 2-octyne, reversible processes that led to H/D scrambling prevented any mechanistic conclusions with regard to Figure 16.²³⁴ Yet, for the loss of H₂ and C₂H₄ in the Fe⁺/2-octyne system, the mechanism could be determined, and it became evident that another, much more general mechanism applies, viz. remote functionalization.^{234,235}

Remote functionalization was first discovered for nitriles in 1987,²³⁶ but since then the generality of this mechanism has been amply demonstrated for a variety of different substrates,⁴⁷ inter alia alkynes. The name was chosen following Breslow's concept of biomimetic synthesis;²³⁷ Figure 17 presents the generalized mechanism for an unspecified functional group X. Complexation of the metal ion M⁺ to that functional group will effectively prevent (on geometric grounds) any insertion into bonds within the proximity of X. Instead, only remote bonds can be reached, e.g., by folding back of the alkyl chain. For substrates with a not-too-long alkyl chain it is exclusively a C-H bond of the terminal CH₃ group that is activated (R = H), and the so-formed intermediate 65 will then undergo competitively either β -hydrogen shift or β -CC cleavage. Reductive elimination of H₂ from 66 furnishes the ω -unsaturated complex 67, while loss of C₂H₄ (R = H) from 68 yields the shortened (by two methylene groups) ligand in 69.

For 2-octyne (X = $CH_3C = C-$), and maybe also for 3-octyne, H_2 and C_2H_4 are formed by remote functionalization, 234, 235 as evidenced by the labeling results and by CID, which was used to reveal the identity of the dehydrogenation product 67 with the Fe⁺ complex of 1-octen-6-yne, formed independently in the ion source.²³⁵ The formation of C_2H_4 from Fe(4-octyne)⁺, which is the almost exclusive mode of decomposition for this complex, might be described by both mechanisms, via the traditional propargylic insertion in Figure 16,^{230,232} or by remote functionalization (Figure 17). The two possibilities differ in their order of C-H/C-C activation steps. The observed isotope effects-no primary kinetic isotope effect for the C-H breaking step and a secondary kinetic isotope effect of $k_{\rm H}/k_{\rm D} = 1.1$ per deuterium for the loss of ethene-together with the absence of scrambled products unambiguously shows

that C-H insertion must precede the C-C cleavage. As no isotope effect is observed, any β -H shift in the C-C insertion product should require less energy than the loss of the alkene ligand and should therefore be reversible, which it is not. Hence, it can be concluded that C_2H_4 is formed via remote functionalization for 4-octyne as well.^{234,238}

It is informative to compare this result with those for the other late first row ions, which all give rise to loss of ethene upon reaction with 4-octyne. ²H labeling reveals that except for Mn⁺, where H/D exchange processes prevail,²³⁹⁻²⁴¹ Cr⁺ through Cu⁺ produce C_2H_4 exclusively from the ω and $(\omega - 1)$ positions.²⁴⁰ Thus, kinetic isotope effects (KIE's) could be determined and three types of metal-ion-dependent reactivity emerged. Fe⁺ is the only example where it is not the C-H activation that is rate-determining, but the ethene loss, for which an isotope effect is observed.^{234,238,240,241} For $Cr^{+240,241}$ and Cu^{+240} the reversed situation is encountered; the activation of the C-H bond is rate-determining as a primary KIE is observed, but on the other hand no secondary KIE is found for the loss of ethene. The third category is formed by Co⁺ and Ni⁺, for which both processes, C-H activation and ethene loss are rate-determining.²⁴⁰ An interesting inverse relationship between the magnitude of the primary KIE for C-H activation and the $D^{\circ}(M^+-H)$ bond dissociation energies could be noted in the course of this study: weak M^+ -H bonds give rise to large isotope effects and vice versa.²⁴⁰

The reactions of $Cr^{+240,241}$ and $Mn^{+239-243}$ with 4-octyne have been studied quite thoroughly by using ²H labeling; the observed reactivity in the metastable-ion studies is remarkable in view of the unreactivity of both metal ions with alkanes (see section IV). It was therefore carefully ensured by means of charge stripping²⁴⁴ and high-resolution translational energy loss spectroscopy¹²² experiments that indeed ground-state Cr^+ is formed under the high-pressure chemical ionization conditions employed;²⁴⁵ furthermore, under FTICR⁷¹ and ion-beam^{43i,246} conditions, similar reactivity could be noted. In addition to the already mentioned loss of C_2H_4 , Mn(4-octyne)⁺ shows in its metastable-ion spectrum signals due to several other losses (eqs 41–45). The hydrogen stems to 83% from

$$Mn(4-octyne)^+ \rightarrow MnC_8H_{12}^+ + H_2 (23\%)$$
 (41)

$$\rightarrow MnC_7H_{10}^+ + CH_4 (7\%)$$
 (42)

$$\rightarrow MnC_6H_{10}^+ + C_2H_4 (40\%)$$
 (43)

$$\rightarrow MnC_5H_8^+ + C_3H_6 (19\%)$$
 (44)

$$\rightarrow Mn^{+} + C_8 H_{14} (11\%)$$
 (45)

dehydrogenation across the C(1)–C(2) bond and to 17% from across the C(2)–C(3) bond.^{241–243} An average isotope effect of $k_{\rm H_2}/k_{\rm HD} = 1.7^{241,242}$ or 1.6,²⁴³ respectively, for both processes has been derived from the labeling data. On the contrary, the reaction of Cr⁺, which also dehydrogenates 4-octyne (68%), results in 22% 1.2 and 78% 2.3 elimination, but with nearly the same isotope effect observed, viz. 1.6 for both processes.²⁴¹ From the theory of kinetic isotope effects, the relation of $k_{\rm H_2}/k_{\rm HD}/k_{\rm D_2}$ shows that this has to be due to a symmetric cleavage, where both M⁺–H bonds are broken at the same time.²⁴¹ An interesting corollary of this finding

Figure 18. Parallel or perpendicular approach of H_2 to a metal center and structure of the manganese cycloalkyne produced by 1.6 demethanation of 4-octyne.

is that the reverse process, oxidative addition of H_2 to the metal centers, has to proceed in a "side-on", or parallel fashion, via $[M]^+-\eta^2$ - H_2 (70), and not "end-on", or perpendicular, via $[M]^+-H-H$ (71), in line with the theoretical expectations^{2a} (Figure 18). Kinetic energy release distributions for the dehydrogenations induced by Mn⁺ have been used to derive lower binding energies for the resulting complexes.²⁴³ While the demethanation of 4-octyne by Cr⁺ (5%) proceeds exclusively as a simple 1.2 process,²⁴¹ for Mn⁺ (7%, eq 42) this is only true for 18% of the CH₄ formed. 82% are produced in a formal 1.6 elimination, generating the manganese cycloalkyne 72.^{239,241,242}

Rather unusual results have also been reported for the reactions of Fe⁺ with 1-heptyne. Seventy-eight percent of the unimolecularly generated products are due to loss of C_3H_6 . MS/MS and collision-induced dissociative ionization (CIDI) experiments²⁴⁷ are compatible with the generation of a mixture of propene and cyclopropane for the neutrals that are lost.²⁴⁸ ²H and ¹³C labeling shows that 91% of the C_3H_6 include the acetylenic carbon atoms, hence three hydrogen atoms were transferred from the butyl chain to the C_3H_3 moiety which arises from propargylic insertion of Fe⁺.²⁴⁸ This has been discussed as an intramolecular gas-phase variant of the Crabtree–Felkin mechanism^{1eg.u.249,250} for transfer hydrogenations. Ten percent dehydrogenation is also observed in this system and is mainly due to remote functionalization.²⁵¹

C-H activation processes for 2-octyne by several metal ions have also been reported, but H/D scrambling often precluded mechanistic information. Notable are 19% loss of a hydrogen *radical*, H[•], for Ni⁺ and loss of neutral CuH for Cu⁺, which accounts for 50% of the metastable-ion yield.²⁵¹

The reaction of 3,3-dimethylbutyne (t-BuC=CH, 73) and its homologue 3,3-dimethylpentyne with Fe⁺ are the only reported examples for branched alkynes^{71,185} (Figure 19). For the latter, the expected behavior, insertions into the propargylic C-CH₃ and C-C₂H₅ bonds followed by β -H shifts and loss of CH₄ and C₂H₄ was found, with insertion into the bond to the ethyl group greatly favored. The reaction of Fe^+ with t-BuC=CH was different, though. The predicted loss of CH_4 was an abundant process in MI, high-energy CID, and FTICR spectra, yet, the main product arose by loss of C_3H_6 . MS/MS experiments revealed that this did not correspond to loss of an intact molecule, but to the consecutive losses of CH_4 and C_2H_2 . After loss of CH_4 according to the usual mechanism, the complex of Fe⁺ with 2-methyl-1-buten-3-yne (74) is formed, still possessing an allylic C-H bond. Insertion into this bond followed by cleavage of the acetylenic C-C bond and rearrangement yields 77, which then loses ethyne. This

Figure 19. Reaction of Fe⁺ with 3,3-dimethylbutyne (73) and 2-methyl-1-buten-3-yne (74).

mechanism was further substantiated by the direct reaction of 74 with Fe⁺ which not only afforded C_2H_2 as the dominant product, but in addition led to loss of a hydrogen atom and C_3H_4 , thus demonstrating the lability of the allylic C-H bond and the existence of the mixed complex 77. An identical spectrum was obtained in the MS/MS experiments, and the consecutive losses of CH₄/H[•] and CH₄/C₃H₄ were also detected in the FTICR study.^{71,185} ²H labeling revealed the reversibility of the transformation 74-Fe⁺ = 77.²⁵²

C. Alkadienes

Most of the studies with alkadienes have been performed in sector-field instruments as either metastable-ion or high-energy CID studies, and the majority of the data has been collected for Fe⁺, which is unreactive with allene, 1,3-butadiene, and 1,2-butadiene, but induces isomerization of the latter to the 1,3-butadiene complex 39.²³² Loss of C_2H_4 from Fe(1,2-pentadiene)⁺ generates a mixture of propyne and allene complexes; 2,3-pentadiene isomerizes to 1,3- or 1,4-pentadiene, and all of these form $FeC_2H_2^+$ and $FeC_3H_6^+$ by vinylic in-sertion.²³² Vinylic insertion is also observed for 1,2hexadiene, albeit in competition with allylic insertion. It was argued that observation of vinylic insertion for allenes is due to the fact that this bond is simultaneously allylic to the other double bond.²³² Various other noncumulated hexadienes fragmented via a common bis(allyl) structure, forming propene and $FeC_3H_4^+$, for which a vinyl carbene structure has been proposed.²³²

The spectra of several octadienes containing conjugated or isolated double bonds were compatible with the conventional allylic insertion, β -H shift, alkene loss mechanism, except for 2,4-octadiene, which rearranges to 1,3-octadiene before fragmentation.^{230,232} Extensive ²H and ¹³C labeling for several allenes, 4,5-nonadiene and the three isomeric octadienes, showed that the most favored reaction for Fe⁺ is always the expected allylic C-C cleavage.^{253,254} Fe(4,5-nonadiene)⁺ produces unimolecularly 66% C₂H₄ by allylic and 30% C₃H₆ by vinylic cleavage; both processes show negligible H scrambling.^{253,254} This contrasts the behavior of the octadienes, for which extensive H/D scrambling was observed, due to isomerization processes that did, however, not result in the formation of octynes, but instead afforded other dienes. This tendency for isomerization is much more pronounced for these allenes than for the isomeric alkynes. In addition to the analogous mechanism to Figure 16, remote functionalization is operative, as evidenced by the dehydrogenation of 3,4-octadiene, which affects mainly the $\omega/(\omega - 1)$ pairs.²⁵⁴

Ethene loss from 1,7-octadiene complexes of Fe⁺, Ni⁺, and Cr⁺ has also been reported; while Ni⁺ and Cr⁺ give rise to H/D exchange processes, the C_2H_4 formation for Fe⁺ (8% of the MI fragments) is to 90% specific.²⁵⁵ Double allylic insertion generates $Fe(C_2H_4)(\eta^3-C_3H_5)_2^+$, which loses C_2H_4 to yield $Fe(\eta^3-C_3H_5)_2^+$. CID spectra on an isotopomer of this ion reveal that H/D exchange between the two allyl ligands occurs, a process that can be explained by invoking reversible coupling to 1,5hexadiene.²⁵⁵ Propene loss from 1,7-octadiene proceeds for Cr^+ (15%) slightly more specific than for Fe⁺ (50%) and Ni⁺ (69%), which produce C_3H_6 according to Figure 15, but with extensive H/D scrambling. Cr⁺ produces about 60% of the propene by allylic insertion followed by transfer of an *allylic* hydrogen from $C_{(6)}$ and only about 40% by the traditional mechanism.²⁵⁶ about 40% by the traditional mechanism.²

The reaction of norbornadiene with Co⁺ and Rh⁺ has been investigated with an FTICR instrument. Co⁺ mainly gives rise to the retro-Diels-Alder reaction, affording C_2H_2 and C_5H_6 ; Rh⁺, in addition, yields loss of H_2 , C_6H_6 , and H_2/C_6H_6 .²⁵⁷

VI. Reactions of Bare Metal Ions with Nitrlies and Isonitriles

A. Linear Nitriles and Related Compounds

As already described above (section V.B), investigations on the reaction of Fe⁺ with linear nitriles led to the discovery of the remote functionalization mechanism (Figure 17, M = Fe, X = CN, R = H).²³⁶ In the row of *n*-alkanenitriles, beginning with *n*-PrCN, losses of H₂ and C₂H₄ were observed, and a dramatic increase with the chain length could be noted.^{68b,236} ²H and ¹³C labeling for some of the nitriles substantiated the

Figure 20. Consecutive loss of H_2 and alkenes from Fe⁺ complexes of longer alkanenitriles.

mechanism as both neutrals stemmed from the $\omega/(\omega - \omega)$ 1) positions. For longer chain nitriles the activation of internal C-H bonds was also observed ($R = CH_3, C_2H_5$, etc.); this leads to the production of higher alkenes and molecular hydrogen from internal methylene groups.²⁵⁸ The preferred ring size of the intermediates formed (65) differs slightly for Fe⁺ versus Co^{+ 258,259} and Ni⁺,²⁶⁰ which also react with nitriles by remote functionalization. Fe⁺ preferentially inserts into a $C_{(8)}$ -H and Co⁺ and Ni⁺ into a C₍₇₎-H bond. The amount of $d \rightarrow \pi^*$ back-bonding of the metal ions, which in turn induces deviations of the C-C-N angle from linearity, has been suggested as a possible explanation for the differences. Upon collisional activation, formal loss of "alkanes" is observed for the Fe⁺ and Co⁺ complexes.²⁵⁸ This reaction is either absent or of negligible intensity in metastable-ion spectra.²⁶¹ While for Co⁺, ²H labeling and MS/MS experiments show that indeed alkanes are formed by a conventional C–C insertion, β -H shift, reductive elimination mechanism, for Fe⁺ this applies only to the loss of methane. Other products due to loss of " $C_n H_{2n+2}$ " arise by the mechanism shown in Figure 20 in a consecutive reaction; dehydrogenation $(78 \rightarrow 79)$ is followed by allylic C–C insertion (79 \rightarrow 80), β -H shift, and loss of an alkene.²⁵⁸ Starting directly from alkenenitriles the loss of an alkene is even observed in metastable-ion spectra.²⁶² The reaction of Fe⁺ with several nitriles of the type $CH_3(CH_2)_nCH = CH(CH_2)_mCN$ demonstrates that for m = 2-4 exclusively insertion into that allylic C-C bond which is further away from the cyanide group, occurs; partial isomerization of the double bond "away" from CN is a competing process. For m = 0 or 1, no bidentate complexation of the metal ion seems to be possible as exclusively remote functionalization according to Figure 17 is observed in this case.262

The preference of Fe⁺ to insert into remote C-H bonds, particularly at $C_{(7)}$ or $C_{(8)}$, was used to test the ability of the metal ion for insertion into C-C bonds and for β -CH₃ shifts.²⁶³ Insertion into the remote C₍₇₎-H bond of 8,8-dimethylnonanenitrile might have led to a situation, where a β -CH₃ transfer from C₍₈₎ would have been feasible. Actually,²H labeling revealed no indication for such a β -CH₃ shift, but showed instead that insertion into the $C_{(7)}$ – $C_{(8)}$ (15%) and the $C_{(8)}$ – $C_{(9)}$ bond (76%) occurred with high specifity. In the latter case, β -H shift from C₍₉₎ (90%) or C₍₇₎ (10%) and reductive elimination of CH_4 resulted, while in the former case exclusively a β -hydrogen from C₍₉₎ was transferred. Loss of isobutene and rearrangement according to Figure 17 $(68 \rightarrow 69, (CH_3)_2C = CH_2 \text{ in place of } RCH = CH_2) \text{ fi-}$ nally afforded CH₃(CH₂)₅CN-Fe⁺, whose structure was evidenced in an MS/MS experiment by comparison with the authentic complex.²⁶³

As a β -CH₃ shift from a silicon atom might be accomplished more easily, the Si analogue of 8,8-dimethylnonanenitrile, i.e. 7-(trimethylsilyl)heptanenitrile, was studied with Fe⁺.²⁶⁴ Indeed, exclusive insertion into the C₍₇₎-H bond was observed, but instead of a β -CH₃ shift from the trimethylsilyl group, a β -H shift from C₍₆₎ and loss of H₂ occurred. The high specifity of the insertion was ascribed to the well-known β -effect of silicon.²⁶⁵

It is not unreasonable to expect deviations from the remote functionalization mechanism in Figure 17 if the number of methylene groups n becomes so small that the ring strain in the intermediate 68 gets prohibitively high. In line with this assumption, the reaction of Fe⁺, Co^+ , and Ni⁺ with *n*-pentanenitrile (82) illustrates that, depending on the mode of complexation, ethene formation by remote functionalization can be completely suppressed.^{266,267} It is already known from the longer nitriles that Fe⁺ prefers insertions into positions that are more remote than for Co⁺ and Ni⁺;^{258,260} thus for Co⁺ and Ni⁺ greater deviations from a linear CH₂CNM⁺ arrangement are possible and can help to minimize any strain. This might explain why Ni⁺, but not Fe⁺, generates C₂H₄ by remote functionalization via the strained intermediate 87.266,267 For Fe⁺, ethene is produced from internal positions by the direct activation of a C-C bond that is not preceded by C-H activation. Insertion into the C-CH₃ bond and subsequent β -CC cleavage affords the intermediate 86 (Figure 21), which loses C_2H_4 to form 88. This complex can be distinguished from the isomeric propanenitrile complex 89, which would arise from remote functionalization, by its characteristic CID spectrum. Co⁺ reacts with 82 to produce C_2H_4 by both mechanisms, hence, the isomeric complexes 88 and 89 are formed in competition, a finding that was derived by combining ²H labeling with CID spectrometry.²⁶⁷

Several reversible processes were revealed by the ²H labeling, e.g., between 85 and 87. The most interesting concerns the collision complex 83 between Fe⁺ and 82 which is in equilibrium with the ferracyclobutane complex 90. This ion, owing to its symmetry, upon reopening equilibrates the α - and the γ -positions of the substrate. This indirect demonstration for the viability of bare Fe⁺ to form ferracyclobutane structures may be interesting with regard to the discussion on the mechanism of alkene cyclopropanation, where, for example, the existence of positively charged ferracyclobutane intermediates has not unambiguously been determined or ruled out.²⁰⁰ The absence of analogous cobalta- or nickelacyclobutane ions is reminiscent of the stabilities of the unsubstituted metallacyclobutane ions (see section IV.D) and could indicate that the stability of these complexes is not only relatively independent upon

Figure 21. Reaction of pentanenitrile (82) with Fe⁺, Co⁺, and Ni⁺, generating two distinguishable $MC_3H_5N^+$ isomers.

substitution, but might even reflect inherent properties of these intermediates.

All three metal ions dehydrogenate 82 as well; probably because the strain in 66 is smaller than in 68, this reaction is specific and proceeds by remote functionalization. The product that arises, an γ , δ -unsaturated nitrile, however, undergoes further reversible processes that could only be revealed by CID spectra of the dehydrogenation products. All three ions activate the allylic C_(β)-H bond to form a hydrido-allyl complex. Similar to other allylic systems,^{444,111,269-270} the terminal, but not the central, hydrogens exchange rapidly.^{266,267}

Other metal ions have not been studied in the same depth as Fe⁺-Ni⁺ with linear nitriles. Mn⁺ is reported to exclusively dehydrogenate heptanenitrile²⁵⁹ while Cr^{+259} and Cu^{+71} only form adduct complexes with nitriles under FTICR conditions. Cu(RCN)⁺ complexes show no unimolecular cleavages, except for ligand detachment, but upon collisional activation other products are observed.^{71,271} The formation of Cu(H,C,N)⁺, Cu⁺--CH₂CN, and Cu(CH₂=-CH--CN)⁺ has been interpreted in terms of a "side-on" coordination.²⁷¹

B. Isonitriles and Branched Nitriles

A markedly different chemistry is encountered in the reaction of Fe⁺ with 2,2-dimethylpropanenitrile (*t*-BuCN) as two completely "new" products are formed.²⁷² These are a complex of Fe⁺ with [H,C,N] and Fe-(C₄H₈)⁺ by loss of [H,CN]; both obviously arise from a common intermediate of the general structure Fe-(H,CN)(C₄H₈)⁺. The latter is, however, not formed by the insertion/ β -hydrogen shift mechanism, formulated

by Allison and Ridge for other functionalized alkanes.^{273,274} as this mechanism is expected to afford 94, which in turn should decompose to 95 (Figure 22), i.e. $Fe(HNC)^+$, and to 20 by loss of HNC. This mechanism can be discarded by comparison with the reaction of 2-isocyano-2-methylpropane (t-BuNC), which also affords Fe(H,C,N)⁺ and loss of (H,CN).²⁷² High-energy CID reveals that $Fe(HCN)^+$ is formed from t-BuCN and $Fe(HNC)^+$ from t-BuNC, thus complexes 98 are formed in lieu of 95. This has been explained by invoking an ion/dipole mechanism.^{272,275} Complexation of the metal ion to the functional group XY (XY = NC, CN) induces cleavage of the C-X bond and gives rise to the ion/ dipole complex 96. The incipient carbenium ion therein now serves as an intramolecular protonating reagent for the XYM dipole;²⁷⁶ this leads to the diligated complex 97, which eventually dissociates, reflecting the relative binding energies of its two ligands. This mechanism not only explains why complexes 98 are formed, but also why 97, generated from t-BuCN, preferentially loses HCN while 97, generated from t-BuNC, preferentially retains HNC as the stronger bound ligand. This observation indirectly proves that indeed the thermodynamically at least 10 kcal mol⁻¹ more unfavorable HNC²⁷⁷ is produced; the appropriate CIDI experiment^{247,278} to demonstrate this directly was impossible due to intensity reasons. Ion/dipole complexes are known to be quite long lived,^{279a-c} being trapped on the reaction coordinate by a potential-energy barrier on one side and an entropic bottleneck on the other side. On the contrary, hydrogen rearrangements in carbenium ions are fast processes,^{279d} and H/D scrambling in 96 has therefore to be expected, but cannot be observed,

Figure 22. Reaction of transition-metal ions M^+ with t-BuCN and t-BuNC via the ion/dipole mechanism.

owing to the equivalency of all hydrogen atoms. However, the reactions of Co⁺, Ni⁺, and Cu⁺ with 2methylbutanenitrile (see below) as well as the reaction of Fe⁺ with 2,2-dimethylbutanenitrile also afford M-(HCN)⁺ ions and loss of HCN. As in these substrates the hydrogens are no longer equivalent, ²H labeling indeed proves that not only the β -hydrogen atoms, but in fact all positions contribute to the hydrogen-transfer step.^{72,261}

The Cu(HCN)⁺ and Cu(HNC)⁺ complexes retain their structure even upon neutralization to Cu(HCN) and Cu(HNC) as was shown in a neutralization reionization (NRMS²⁸⁰) study.²⁸¹

The different behavior of t-BuNC and t-BuCN already indicates that a metal ion induced isomerization of the isonitriles²⁸² to the thermodynamically more stable nitriles²⁸³ is absent, although this long-known reaction²⁸⁴ occurs in solution,²⁸⁵ at metal surfacs,²⁸⁶ or in the gas phase at elevated temperatures.²⁸⁷ The same result was obtained in a more detailed study on the reaction of Fe^+ with several *n*-alkyl isocyanides.²⁸⁸ Comparison with the analogous nitriles revealed rather large differences; for short isocyanides, Fe(HNC)⁺ formation via the ion/dipole mechanism (Figure 22) was observed while with increasing chain length dehydrogenation by remote functionalization effectively began to compete and was the most favored pathway already for $n-C_5H_{11}NC$. While for the ion/dipole mechanism H/D scrambling in the primary carbenium ions is observed, dehydrogenation involves the $\omega/(\omega - 1)$ positions. In a screening study with nearly all d-block transition-metal ions, isonitriles were used to reveal trends across the periodic table.²²⁴ It resulted that dehydrogenation in general increased in importance with increasing chain length, and was most prominent in the "left part" of the transition-metal series for the

group 4 metal ions, and then rapidly drops, with Mn^+ from group 7 being found as totally unable for dehydrogenation of isonitriles. In the "right part" of the series a steady decrease from group 8, which is highest, to group 11 and 12, which show no H₂ loss at all, is observed. Second- and third-row metal ions give rise to significantly higher amounts of H₂ and 2H₂. This evidences that the general properties of the different metal ions found in their reactions toward alkanes (see section IV) are conserved also for other substrates.

The ion/dipole mechanism is operative for all transition-metal ions.²²⁴ It is reduced in importance for those metal ions that effectively dehydrogenate and is most important for groups 6 and 11, i.e., those ions that are often unable to insert into C-H or C-C bonds. As any insertion is avoided in Figure 22, the ion/dipole mechanism may be the only alternative left for those ions and thus, the extent by which the mechanism is operative depends on the need for it.

Ligand-detachment signals, that is, loss of the intact isonitrile from the $M(RNC)^+$ complexes, are most pronounced in cases where no other reactions are possible. Thus they decrease with increasing chain length and are highest for relatively unreactive metal ions, such as Mn^+ . The intensity of the ligand-detachment signals can therefore be taken as a measure for lacking reactivity.²²⁴

Additional support for this hypothesis comes from a comparison of the relative amounts of ligand-detachment signals versus other processes in the reactions of Fe⁺ with secondary nitriles R^1R^2CHCN .²⁶¹ For these nitriles only two other mechanisms are operative, remote functionalization and loss of CH₄ by initial C–CN insertion (see below). As can be seen from Figure 23, ligand detachment rapidly diminishes as soon as the alkyl chains are long enough to permit the operation

Figure 23. Effect of alkyl chain length variation on the three types of reactions of secondary nitriles R¹R²CHCN with Fe⁺.

of the other two mechanisms.

With regard to remote functionalization, the secondary nitriles behave strictly analogous to linear nitriles; therefore the determination of intramolecular kinetic isotope effects for symmetric substrates allowed more insight about the kinetics of the individual steps in Figure 17. Extensive labeling on 2-butylhexanenitrile $((n-C_4H_9)_2$ CHCN) demonstrated that C-H activation is not rate determining, that a secondary kinetic isotope effect is present for the ethene loss, and that both, the β -hydrogen shift and the reductive elimination of H₂, are associated with a primary KIE.^{261,289}

Formal unimolecular loss of alkanes (C_2H_6 , C_3H_8), which is observed for nitriles with two long chains, actually is the product of a successive *double remote* functionalization of both alkyl chains, viz. combined losses of alkenes and H_2 .^{261,290} ²H labeling and MS/MS experiments revealed that unlike the linear nitriles in Figure 20, which only lost H_2/C_nH_{2n} in CID experiments, here the loss of the alkene from the one chain (C_2H_4 , C_3H_6) precedes the loss of H_2 from the other chain, and not vice versa. Only recently an example for double remote functionalization of a *rigid* molecule in the condensed phase has been reported.²⁹¹

The methane loss in Figure 23 is also unique to branched nitriles as it commences with insertion of Fe⁺ into the C-CN bond of the substrate followed by β hydrogen shift. Reductive elimination of HCN from the resulting intermediate is obviously thermodynamically unfavorable or kinetically hindered as activation of a C-CH₃ bond and subsequent reductive elimination of CH₄ is observed instead.²⁸¹ The C-C bond to be broken can even be a remote C-CH₃ bond, as for example in 2-butylhexanenitrile, but then the loss of CH₄ is only a minor process. Examination of the various R¹R²CHCN-Fe⁺ complexes showed that loss of methane is most pronounced for systems where it is an *allylic* C-CH₃ bond that is activated. Figure 24 depicts the mechanism for 2-methylbutanenitrile and also includes a degenerate isomerization which is observed for this particular system. Small signals due to loss of CH₃ radicals are observed in the metastable-ion and FTICR spectra and may arise from intermediates 102/102'.^{71,72,261} For (CH₃)₂CHCN, the mechanism in Figure 24 is impossible, and, on the other hand, methane generation is suppressed as soon as one chain is long enough to allow competition by the more favorable remote functionalization (Figure 17) and thus has an intermediate maximum for (C₂H₅)₂CHCN (Figure 23).²⁶¹

The reaction of Fe⁺ with 2,2-dimethylbutanenitrile is interesting because of this substrate being an intermediate between the secondary 2-methylbutanenitrile, where remote functionalization and the allylic mechanism in Figure 24 applied, and the tertiary nitrile t-BuCN, where the ion/dipole mechanism was the exclusive decomposition mode. Indeed, products due to all three mechanisms were noted, with the latter two prevailing.^{71,261}

Looking at the behavior of the other first-row metal ions Ti⁺ through Zn⁺ with small secondary nitriles R^1R^2CHCN is informative; again some intrinsic properties of the metal ions and general trends across the first row are revealed. The reaction of Fe⁺ with 2methylbutanenitrile has already been described to proceed by the two mechanisms in Figures 17 and 24.²⁶¹ Cu⁺, on the other hand, with the same substrate exclusively forms Cu(HCN)⁺ and Cu(C₄H₈)⁺ by loss of HCN according to the ion/dipole mechanism in Figure 22.⁷² Study of Co⁺ and Ni⁺ as the two elemental ions in between shows that a gradual switching between the three mechanisms is operative. For Co⁺, products due to all three mechanisms were present, and for Ni⁺ remote functionalization and ion/dipole mechanism ap-

Figure 24. Generalized mechanism for the generation of CH_4 and CH_3 by allylic insertion of group 8–10 transition-metal ions M⁺ with 2-methylbutanenitrile.

Figure 25. Effect of different transition-metal ions on the relative contributions of the three mechanisms operative in the reaction with 2-methylbutanenitrile.

plied (Figure 25).⁷² The same result has been obtained for 2-ethylbutanenitrile.²⁹² The steadily increasing amount of the ion/dipole mechanism reveals the increasing tendency to avoid insertion reactions, again by the principle that the extent by which it is operative depends on the need for it.²²⁴ It is therefore highly likely that formation of Co(HCN)⁺ and CoC₃H₆⁺ by loss of HCN in the reaction of Co⁺ with 2-methylpropane-

nitrile, which has been ascribed to the insertion/ β -hydrogen-shift mechanism,²⁵⁹ is also accomplished via the ion/dipole mechanism.

Early transition metal ions like Ti⁺ and V⁺ mainly give rise to dehydrogenation with losses of H₂, 2H₂, and H₂ together with other neutrals being observed.^{72,292} Cr⁺, Mn⁺, and Zn⁺ are unreactive with 2-methyl- and 2-ethylbutanenitrile; under FTICR conditions adduct formation is observed and exclusively ligand detachment in metastable-ion spectra. Zn^+ in addition undergoes charge-transfer reactions with the nitriles. Collision-induced dissociation on the adduct complexes leads to ligand detachment and sometimes to low-intense products from the ion/dipole mechanism and from radical losses.^{72,292} However, Cr^+ reacts with t- $C_4H_9CN^{47c}$ and t- $C_5H_{11}CN$,²⁵² and the two products of the ion/dipole mechanism (Figure 22) are observed. Thus, similar reactivity of the first-row ions as toward alkanes is found in the reactions with the nitriles.

VII. Reactions of Bare Metal Ions with Other Substrates

A. Alkyl Halides and Alcohols

In their chemistry with bare metal ions, alkyl halides and alcohols have very much in common, and that is why they will be discussed together. The first studies with these substrates employed alkali-metal ions and were designed to determine heterolytic bond dissociation energies, $D^{\circ}(M^+-X^-)$ and $D^{\circ}(R^+-X^-)$. But instead of showing only the expected chloride abstraction (eq 46, M = Li, X = Cl) Li⁺ was observed to cleave branched alkyl chlorides into HCl and alkanes (eqs 47 and 48) while Na⁺ and K⁺ were more or less unreactive with the substrates employed.²⁹³⁻²⁹⁵ Use of 2-chloro-

$$M^{+} + C_n H_{2n+1} X \rightarrow C_n H_{2n+1}^{+} + MX$$
 (46)

$$\rightarrow$$
 M(HX)⁺ + C_nH_{2n} (47)

$$\rightarrow M(C_n H_{2n})^+ + HX \qquad (48)$$

propane- d_6 revealed that DCl was formed by 1.2 elimination, and a mechanism was proposed that was later termed "dissociative attachment" or simply referred to as Lewis acid chemistry and which may be regarded as precursor of the ion/dipole mechanism in Figure 22. The intermediacy of ion/dipole complexes was, however, not yet recognized, and it was only proposed that association of the metal ion to the substrate leads to a chemically activated species which may either dissociate to metal halide and a carbenium ion, or which may rearrange to a diligated complex of M^+ with HX and the alkene, i.e., analogous to 97, followed by competitive ligand loss.²⁹³ The barrier for the production of the $Li(H_2O)(i-C_4H_8)^+$ complex from tert-butyl alcohol has been estimated to be larger than the activation energy for dissociation of the $\text{Li}(t-\text{C}_4\text{H}_9\text{OH})^+$ collision complex by 1.6 ± 0.7 kcal mol⁻¹.^{296a,b} This contrasts the results for i-C₃H₇Cl, i-C₃H₇Br, and n-C₃H₇Cl reacting with Li⁺; the isomerization barriers to $Li(HX)(C_3H_6)^+$ increase in the order of citation and are lower than the activation energy for the redissociation back to Li⁺ and RX.^{296c}

Soon afterward, Allison and Ridge extended the work with halides and alcohols to transition-metal ions.^{273,274,297} Reaction of Fe⁺, Co⁺, Ni⁺, and Hg⁺ with the methyl halides allowed to derive limits for $D^{\circ}(M^+-CH_3)$ and $D^{\circ}(M^+-X)$. Observation of the processes depicted in eqs 49 and 50 in some cases indicated insertion of the metal ions into the CH₃-X bond, although mostly MX⁺ was the sole product. Convincing

$$M^+ + CH_3 X \rightarrow MX^+ + CH_3$$
(49)

$$\rightarrow MCH_3^+ + X \tag{50}$$

evidence for this assumption was obtained using the reaction sequence in eqs 51 and 52. Exclusive loss of

$$Fe(CO)^+ + CH_3I \rightarrow FeCH_3I^+ + CO$$
 (51)

$$FeCH_3I^+ + CD_3I \rightarrow FeCD_3I_2^+ + CH_3$$
 (52)

CH₃ in eq 52 excludes a symmetrical collision complex of the type [Fe(CH₃I)(CD₃I)⁺]*, thus CH₃-Fe⁺-I is formed in eq 51. Analogous behavior could be demonstrated for CH₃OH.^{273,274} Many other halides or alcohols reacted with Fe⁺-Ni⁺ exclusively according to eqs 46-48 (X = Cl, Br, I, OH), as did Li⁺ and Na⁺, the latter formed Na(alkene)⁺ and HCl from *tertiary* chlorides, while K⁺ was still unreactive. Yet, despite this similarity, based on the following observations, Allison and Ridge concluded that the alkali-metal ions:^{273,274} Similar to CH₃I and CH₃OH, they could show that Ni⁺ inserted into the C₂H₅-I bond (eqs 53 and 54), i.e., Ni(C₂D₄)-(DI)⁺ is actually formed in eq 53. Li⁺ reacts with

$$Ni(CO)^{+} + C_2 D_5 I \rightarrow Ni C_2 D_5 I^{+} + CO$$
(53)

$$\operatorname{NiC}_2 D_5 I^+ + C_2 H_5 I \rightarrow \operatorname{Ni}(C_2 D_4) (C_2 H_5 I)^+ + DI \qquad (54)$$

 $t-C_4H_9Cl$ according to eqs 55–58. Double-resonance

$$\mathrm{Li}^{+} + t \cdot \mathrm{C}_{4}\mathrm{H}_{9}\mathrm{Cl} \rightarrow \mathrm{Li}\mathrm{C}_{4}\mathrm{H}_{8}^{+} + \mathrm{H}\mathrm{Cl}$$
 (55)

$$\operatorname{LiC}_{4}\operatorname{H}_{8}^{+} + t \operatorname{-C}_{4}\operatorname{H}_{9}\operatorname{Cl} \to \operatorname{LiC}_{4}\operatorname{H}_{9}\operatorname{Cl}^{+} + \operatorname{C}_{4}\operatorname{H}_{8}$$
(56)

$$\rightarrow \operatorname{Li}(\operatorname{C}_4\operatorname{H}_8)_2^+ + \operatorname{HCl} \qquad (57)$$

$$\operatorname{LiC}_{4}\operatorname{H}_{9}\operatorname{Cl}^{+} + t \cdot \operatorname{C}_{4}\operatorname{H}_{9}\operatorname{Cl} \rightarrow \operatorname{Li}(\operatorname{C}_{4}\operatorname{H}_{8})\operatorname{C}_{4}\operatorname{H}_{9}\operatorname{Cl}^{+} + \operatorname{HCl}$$
(58)

experiments with a mixture of t-C₄H₉Cl and t-C₄D₉Cl inter alia identified the reactions in eqs 59 and 60, which point to a symmetrical intermediate [Li-(C₄H₉³⁵Cl)(C₄D₉³⁷Cl)⁺]*. It was proposed that alkali-

$$\text{LiC}_{4}\text{H}_{9}^{35}\text{Cl}^{+} + t\text{-}C_{4}\text{D}_{9}^{37}\text{Cl} \rightarrow \text{Li}(\text{C}_{4}\text{H}_{8})(\text{C}_{4}\text{D}_{9}^{37}\text{Cl})^{+} + \text{H}^{35}\text{Cl} \qquad (50\%) (59)$$

$$\rightarrow \text{Li}(\text{C}_4\text{H}_9{}^{35}\text{Cl})(\text{C}_4\text{D}_8)^+ + \text{D}{}^{37}\text{Cl} \qquad (50\%) (60)$$

metal ions reacted via dissociative attachment and transition-metal ions via an insertion/ β -hydrogen shift mechanism. Statistical loss of HI and DI from CD₃CH₂I/Fe⁺ indicated that the β -hydrogen shift was reversible.^{273,274}

It has already been shown in the discussion on the ion/dipole mechanism that transition-metal ions may very well react by abstraction instead of insertion, hence, the distinction between alkali- and transitionmetal ions must not be generalized. Furthermore, it may be argued that loss of CO in eq 53 is more exothermic than loss of $i-C_4H_8$ in eq 56 so that only in the former case sufficient energy for an insertion remains in the product. In addition, in a recent ion-beam study, Armentrout and co-workers were able to demonstrate from features of the cross section that two mechanisms apply in the reactions of Fe^+ -Ni⁺ with CH_3X (X = Cl, Br, I). At low energies indeed insertion into the CH_3 -X bond with subsequent cleavage into MCH_3^+ and MX^+ is observed, but at higher energies direct abstraction of X, but not CH_3 , is possible as well.^{298,299}

The reactions of Mg⁺, ³⁰⁰ Al⁺, ^{58,300,301} Ga⁺, ³⁰¹ In⁺, ³⁰¹ Ti⁺, ^{302,303} Mn⁺, ³⁰⁴ Cu⁺, ^{55,305,306} Ag⁺, ^{55,305-307} and Au⁺ ^{11,306}

with several alkyl halides and alcohols proceed almost exclusively via eqs 46-48 and 61 furthermore. Notable

$$M^{+} + C_n H_{2n+1} X \rightarrow M X^{+} + C_n H_{2n+1}$$
 (61)

exceptions are the formation of AlCl₂⁺ ions and MgX₂ neutrals from 1,2-dihaloalkanes and tetrahalo-methanes.^{58,300} For the former substrates a concerted mechanism has been suggested.⁵⁸ Ti⁺ forms, among other products, TiF_2 from CF_2Cl_2 and $TiCl_2^+$ from di-, tri-, and tetrachloroethene.³⁰² The group 11 ions Cu⁺-Au⁺ are reported to dehydrogenate alcohols, and it has been suggested that H₂ arises from initial O-H insertion followed by β -H shift and reductive elimination, furnishing aldehydes or ketones.^{305,306} The main product for Au⁺ reacting with alcohols is AuH, similarly to the alkanes, but methanide and hydroxide abstraction are also observed; on the contrary, CuH, CuCH₃, and CuOH are only minor products for Cu⁺, and Ag⁺ does not form the analogous neutrals at all, but mainly furnishes the adduct complexes.³⁰⁶ With CH₃Cl and CH_3Br , $AuCH_2^+$ is the main product besides the AuCH₃X⁺ adduct complexes, which are shown by CID and ligand-exchange experiments to actually have the Au(CH₃X)⁺ structure.¹¹ Rh⁺ generates inter alia RhCO⁺ and RhC₂H₄⁺ from C₂H₅OH as shown by high-resolution spectra;^{42a,308} Pd⁺ dehydrogenates C₂-H₅OH,¹⁹⁶ and Ta⁺ forms TaOH⁺ and TaO⁺ from CH₃OH.¹²⁵

A generalization that emerges from these studies is a more pronounced tendency to form $C_n H_{2n+1}^+$ with increasing $n,^{300,307}$ a consequence of the decreasing ionization energies of the $C_n H_{2n+1}^-$ radicals, which makes the carbenium ion formation more and more exothermic.¹⁸⁴ Various limits for $D^{\circ}(M^+-X^-)$ and $D^{\circ}(M^+-X)$ can be derived from these studies, but there are few theoretical values to compare with.^{109a,b}

More quantitative thermochemical data has been collected for MgOH⁺ and MgOH by performing variable-energy CID and photodissociation experiments on Mg(ROH)⁺ complexes ($R=i-C_3H_7$, $s-C_4H_9$, $t-C_4H_9$).³⁰⁹ Mg⁺, MgH₂O⁺, MgOH⁺, and MgOH are the products observed, and the data obtained inter alia allowed the derivation of $D^{\circ}(Mg^+-ROH)$, $D^{\circ}(Mg^+-OH)$, and $D^{\circ}-(Mg-OH)$ bond dissociation energies. $D^{\circ}(Mg^+-OH)$ was also directly determined by photodissociation upon MgOH⁺.³⁰⁹

Some of the reactions of Co⁺ with alkyl chlorides and alcohols can be described with eqs 46-48 and 61,^{33v} but as the chain length increases, a more "alkane-like" chemistry is observed, with C-C insertions prevailing.^{184,310} An important process for substrates with linear chains of at least four carbon atoms is dienecomplex formation by loss of HX/H_2 . To explain the preferred product distributions 5- or 6-membered ring intermediates preceding C-C insertions have been postulated,^{184,311a} yet, no labeling to substantiate this proposal was done. Unfortunately, several assumptions with regard to the mechanisms operative were therefore necessary to derive an order of preference for metal insertion into certain bonds.¹⁸⁴ In a theoretical approach, part of the potential-energy surface of Cr⁺ with $n-C_4H_9Cl$ has been calculated and electrostatic interactions in the initial ion/molecule adduct complex were proposed to account for the final product distribution; the most stable point indeed corresponded to a 6membered ring intermediate.³¹²

Figure 26. Mechanism for the reactions of Co⁺ and Ni⁺ with propanol to afford methanol and ethene.

In a comparison of the overall reactivity of Fe⁺, Cr⁺, and Mo⁺, various alcohols were employed; while for the first-row ions reactivity increased with chain length, for Mo⁺ a decrease was observed.³¹³ Three classes of reactions emerged, dehydration by insertion/ β -hydrogen shift, dehydrogenation by supposedly C-H or O-H insertion, and finally C-C insertions. Cr⁺ was unreactive with methanol and ethanol, dehydrogenated propanol, and predominantly inserted into C-C bonds of longer n-alkanols. Branched alcohols mainly underwent loss of H₂O upon reaction with Cr⁺.^{313,314} Similar to other substrates Mo⁺ afforded multiple dehydrogenations except for $t-C_4H_9OH$ where loss of H_2O/H_2 was favored.³¹³ C-C insertions were only observed in smaller amounts for longer alcohols. Fe⁺ yielded mainly dehydration for smaller and mainly C-C insertion products for longer alcohols.³¹³ This finding contrasts results from metastable-ion decompositions of Fe(alcohol)⁺ complexes. Here, loss of H_2 was predominant for bu-tanol through octanol.^{311a} Multiple losses under the FTICR conditions employed in ref 313 might be responsible for this discrepancy, in this case the "alkane" products would have to be reformulated as H_2 /alkene products. Co⁺ complexes showed such multiple losses already in the MI spectra, where many different products were observed.^{311a} Indeed, for the $Co(n-hexanol)^+$ system, loss of 30 amu does not correspond to the elimination of intact C_2H_6 , but rather to the combined losses of C_2H_4/H_2 .^{311b}

Results from ²H labeling are only available for 1propanol³¹⁵ and 1-pentanol.^{311a} Loss of H₂O from propanol reacting with Fe⁺, Co⁺, and Ni⁺ showed contributions from all positions. The origin of the C₂H₄/ CH₃OH neutrals, that are observed for Co⁺ and Ni⁺ in addition to H₂O, differs substantially for the two ions (Figure 26). For Co⁺, all of the ethene stems from the α/β -position and methanol from C_(γ); for Ni⁺ this accounts only for 20% of the products, the remainder is produced by cleavage of the C_(α)-C_(β) bond (105 \rightarrow 107).³¹⁵ H₂ and C₂H₄ are the main products in the reactions of Fe⁺ and Co⁺ with 1-pentanol, their formation is mainly accomplished by remote functionalization; besides, H₂O loss is observed, which is unspecific for Fe⁺ and in case of Co⁺ mainly affects the γ -position.^{311a}

The chemistry of Co^+ with bifunctional substrates has also been studied in order to determine the favored site of attack. Thus, dominant loss of CoBr besides CoCl and HCl/HBr from 4-chloro-1-bromobutane points to a preferred attack at the bromide end of the molecule.³¹⁰

The 4-halo-1-butanols, however, gave rise to products that were unique to these particular substrates. Co^+ -butadiene complexes by loss of HX/H₂O were the main products; observation of $CoC_2H_2O^+$ was explained with insertion into the central C–C bond, β -hydrogen shift followed by loss of C_2H_5X and subsequently H_2 . Yet, production of HX in each case, but not of H_2O , might indicate some preference for halogen attack.³¹⁰ Besides HCl. CoClOH⁺ is formed by loss of $C_{2}H_{2}$ in the reactions of Co⁺ with 2-chloroethanol, probably in a concerted fashion.³¹⁶ α, ω -Dihaloalkanes and α, ω -haloalkanols react with Li⁺ by intermediate formation of LiX complexes of cyclic halonium ions or protonated cyclic ethers. Owing to the stability of the cyclic halonium ions, LiX is lost from the former complexes, while proton transfer occurs for the latter, resulting in HX loss.³¹⁷ Allyl chloride, allyl bromide, and allyl alcohol all afford loss of HX (X = Cl, Br, OH) upon reaction with Co⁺, thus vinylic C-H bonds are activated as well. Allyl bromide in addition gives the simple cleavage products of the allylic C-Br insertion, i.e., $CoC_3H_5^+$ and $CoBr^{+.316}$ On the contrary, Fe⁺ reacting with allyl chloride exclusively affords $FeC_3H_5^+$ and minor amounts of FeCl^{+,318} Many different products arise from the reaction of Co⁺ with 3-chloro-2-butanone; however, no interaction of the functional groups is observed, but simultaneously products of "ketone and chloride chemistry" are noted.³¹⁶

B. Ammonia and Amines

Ammonia is unreactive with Cr^+-Cu^+ , and Ag^+ , ^{55,319-321} but is exothermically dehydrogenated by Sc^+ , Ti^+ , V^+ , Y^+ , Zr^+ , La^+ , Ta^+ , and Os^+ (eq 62) indicating $D^{\circ}(M^+-NH) > 96$ kcal mol⁻¹.^{107,124,319,322} D° -

$$M^+ + NH_3 \rightarrow MNH^+ + H_2 \tag{62}$$

(Sc⁺-NH) has also been studied theoretically.^{46b} In an ion-beam study two isomeric CoNH₃⁺ ions were distinguished. At the lowest energies accessible Co(NH₃)⁺ is formed exothermically with an approximate lifetime of ~0.2 μ s at ~0.05 eV; above ~0.8 eV, H-Co⁺-NH₂, which has a lifetime of >60 μ s at 1.4 eV, is formed in an endothermic reaction.^{323a} In contrast, for Ni⁺ and Cu⁺, only the exothermic adduct formation was observed.^{323b}

Plotting $D^{\circ}(M^+-NH_x)$ versus $D^{\circ}(H_{x+1}C-NH_x)$ gives linear correlations which are displaced from the $D^{\circ}(M^+-CH_x)/D^{\circ}(H_xC-CH_x)$ lines by the amount of the nitrogen lone-pair contribution. The magnitude of this extra stabilization depends upon the electronic unsaturation of the metal ions and reaches ~28 kcal mol⁻¹ for early transition-metal ions, such as Sc⁺, Ti⁺, and V⁺.^{43g}

The rates of hydride abstraction from mono-, di-, and trimethylamine by Cu⁺ and Ag⁺ have been determined, formation of the metal hydride is the only process observed; it is fast and exothermic in all cases, except for the reaction of Ag⁺ with CH₃NH₂, which is endothermic and affords only the adduct complex.³²⁴ The same amines have been studied with the group 8–10 metal ions Fe⁺, Co⁺, Ni⁺, Ru⁺, and Rh⁺.¹⁹⁶ Hydride abstraction is seen in competition with dehydrogenation and demethanation. As expected the second-row ions afford significantly more loss of H₂ than the first-row ions. MH is the sole product in the reaction of Ag⁺ with

Figure 27. Mechanism for the reactions of Fe⁺ with propylamine involving complete equilibration of the α - and β -position.

2-butylamine^{33g} and of Cu⁺ with propylamine.²⁹²

In case of Co⁺ hydride abstraction is a major reaction with various primary amines, and the exclusive or predominant reaction with secondary and tertiary amines. The reaction is absent for $t-C_4H_9NH_2$, which affords only CH₄ with Co⁺, and has therefore been interpreted as α -hydride abstraction, which yields the stable immonium ions.³²⁵ This result is fully supported by ²H-labeling studies with several amines, many of which afford metal hydrides with Co⁺ and Ni^{+.315,326,327} Loss of H_2 , CH_4 , C_2H_4 , C_2H_6 , and others was observed in an ICR study of Co⁺ with several primary amines. It was concluded that Co⁺ does not insert into the C-N bond of primary and secondary amines but does so in case of tertiary amines. The products were proposed to derive from C-C insertions, and thus the chemistry of amines was thought to parallel that of alkanes.³²⁵ Support for this conclusion was drawn from a study of propylamine with Cr^+-Zn^+ ; similar to alkanes, Mn^+ and Zn^+ were unreactive, Cr^+ , Cu^+ , and Ni⁺ formed only one product, respectively, and Co⁺ and Fe⁺ were able to react in several different ways to afford various products. The observed reactivity was explained in terms of promotion energies to a configuration capable of forming two α -bonds.³²⁸ Loss of H₂ from nearly all amines studied with Co^+ , in particular CH_3NH_2 , but not from $t-C_4H_9NH_2$ or $(C_2H_5)_3N$, as well as loss of HD with $C_2H_5ND_2$, led Radecki and Allison into thinking that H_2 in all cases arose by N-H insertion, which is followed by β -H shift and formation of imines.³²⁵ And yet, ²H labeling results (see below) are not in support of this generalization.

Propylamine has been studied with Fe⁺, Co⁺, and Ni⁺ by employing ²H labeling.^{315,326} All three metal ions afford loss of H₂, but while for Ni⁺ all positions are affected, Fe⁺ and Co⁺ generate H₂ specifically from the $\omega/(\omega - 1)$ position by remote functionalization (Figure 17). The production of C₂H₄ by Co⁺ and Ni⁺ is also due to remote functionalization, albeit with scrambling of the ethyl hydrogens in case of Co⁺, yet, the situation is completely different for Fe⁺. Contrary to earlier conclusions,^{325,328} C₂H₄ stems from the α/β -position of the substrate.^{315,326} The α - and β -methylene groups are completely equilibrated via intermediate 110 (Figure 27) before NH₃ and C₃H₆ are formed; 111, once formed,

Figure 28. Generalized mechanism for the reactions of group 8-10 transition-metal ions Fe^+-Ni^+ with $i-C_4H_9NH_2$ (R = H) and neo- $C_5H_{11}NH_2$ (R = CH₃).

rapidly decomposes by β -H shift.

Dehydrogenation of butylamine by Fe⁺, which accounts for 93% of the products, is also due to remote functionalization, but the remaining 7% C_2H_4 originate from several positions.³²⁹ 2-Methyl-1-propylamine (i- $C_4H_9NH_2$) and 2,2-dimethyl-1-propylamine (*neo*- $C_5H_{11}NH_2$) have been studied with Fe⁺, Co⁺, and Ni⁺.³²⁷ In analogy to propylamine, H₂ production for Ni⁺ is combined with extensive scrambling processes while Fe⁺ and Co⁺ dehydrogenate i-C₄H₉NH₂ specifically by remote functionalization. CH_4 for all metal ions and both substrates arises from insertion into a C₍₂₎–C₍₃₎ bond followed by β -hydrogen shift from another γ -CH₃ group and reductive elimination of methane. Production of C_3H_6 from isobutylamine and of C_4H_8 from neopentylamine is, depending on the metal ion, due to different mechanisms so that even a "tuning" between C-H or C-C activation processes is possible. Figure 28 depicts a generalized view of both mechanisms and also includes the CH_4 and H_2 losses. Initial C-C or C-H activation generates the intermediates 113 and 114 which may decompose by β -CC or β -CN cleavage, or by β -H shift. Co⁺ and Ni⁺ exclusively produce C₃H₆ or C_4H_8 by the C-H insertion sequence but Fe⁺ is able to react in both ways.³²⁷

The isomeric substrates 2,2-dimethyl-1-butylamine and 2-ethyl-1-butylamine have been investigated upon their reactivity with Fe⁺ and Co⁺.^{329,330} Fe⁺ only affords H₂ and C₄H₈ from both amines while Co⁺, in addition, loses CH₄, C₂H₄, and C₂H₆. ²H labeling revealed that H₂ and C₂H₄ are once again due to remote functionalization and that methane and ethane are formed in a mechanism analogous to Figure 28 by C–C insertion/ β -H shift. The production of C₄H₈ from both substrates is noteworthy as this represents another case of C–C activation without preceding C–H activation. Insertion of the metal ion into a terminal C–CH₃ bond is followed by β -cleavage of the C–CH₂NH₂ bond; by loss of *n*- or *i*-C₄H₈ in both cases CH₃–M⁺–CH₂NH₂ ions arise as final products.^{329,330} Similarly, *t*-C₅H₁₁NH₂ affords C₄H₈ loss with Fe⁺ by insertion into the terminal C–CH₃ bond and β -CN cleavage to generate CH₃–Fe⁺–NH₂, whose structure has been characterized in CID experiments.³³¹

Allylamine has been studied with Co⁺; NH₃, NH₂, C₂H₂, and H₂ are formed.³¹⁶ Methanide abstraction from NH(Si(CH₃)₃)₂ by Fe⁺ and Co⁺ has been reported and attributed to the stability of the resulting organic fragment.^{332a} The main product of Fe⁺ interacting with this substrate is methane which incorporates the unique hydrogen, as revealed from study of the ND analogue.^{332b} Interestingly, CH₃N(Si(CH₃)₃)₂ produces mainly C₂H₆ with Fe⁺ so that, regardless if N–C or Si–C insertion precedes, the second step of the mechanism requires a β -CH₃ shift, either from Si³³³ or from N. This unusual step is even reversible, as shown by ²H labeling.^{332b}

A report on the reactions of Ti^+-Ni^+ and Nb^+ with mono-, di-, and triethylamine once again showed the preference of the early transition metal ions for C-H activation.³³⁴ Ti⁺, V⁺, and Nb⁺ gave rise to extensive dehydrogenations or losses of hydrogen molecules together with ethane while for Fe⁺-Ni⁺ loss of CH₄ and C_2H_4 was observed, too. Cr⁺ and Mn⁺ formed adduct complexes but unspecified amounts of single dehydrogenation were also present. Radical losses were often encountered and may point to the production of excited states in the laser ablation/pulsed molecular beam technique.

C. Carbonyl Compounds

1. Aldehydes and Acyclic Ketones

Already the first representatives, i.e., formaldehyde, acetaldehyde, and acetone, are reactive with several metal ions. Fe⁺-Ni⁺ afford decarbonylation according to Figure 29 (R, R' = H, CH₃).^{74,76,196,335-338} 120, which is only observed for acetone (R = R' = CH₃), has been shown by high-energy CID to possess the metal-dimethyl structure indeed.⁷⁴ For the decarbonylation of acetaldehyde by Cr⁺ an excited state is responsible;³³⁷ Cr⁺ is also unreactive with propanal and acetone.³³⁹ KERD experiments for Co⁺/CH₃COCH₃ demonstrate the absence of an activation barrier for 118 \rightarrow 119, hence, no barrier exists for the reaction of CH₃-CH₃ with CoCO⁺.⁷⁶

Figure 29. Generalized mechanism for the decarbonylation of ketones and aldehydes by transition-metal ions M⁺.

The second-row group 8-10 ions show a somewhat different behavior than their lighter congeners. Toward acetone, Pd⁺ behaves analogously to Ni⁺, but Ru⁺ and Rh^+ in addition to loss of CO and C_2H_6 afford mainly loss of CH_4 and further CO/H_2 .¹¹⁹ With acetaldehyde, besides loss of CH₄, which is the only product in case of Co⁺ and Ni⁺, Rh⁺ produces H₂ while Pd⁺ forms PdH.¹⁹⁶ While for propanal the same products are formed by Fe⁺ and Ru⁺, and Co⁺ and Rh⁺ also give a very similar product distribution, Ni⁺ and Pd⁺ show a pronouncedly different reactivity. Dehydrogenation, which accounts for 43% of the Ni⁺ products, is absent for Pd⁺, which mainly forms PdH.¹⁹⁶ Rh⁺ and Pd⁺ both dehydrogenate formaldehyde.³³⁸ Mn⁺ is unreactive with acetone, but endothermic formation of MnCH₃⁺ and MnCH₃ has been reported in an ion-beam study.¹⁸⁹ Hydride or methanide abstraction by Cu⁺ for propanal³⁴⁰ or acetone,³³⁵ respectively, is not believed to involve an insertion mechanism; with CH₂O only adduct formation is observed.³³⁸

Transition-metal ions with high oxygen affinities often form predominantly MO⁺ ions in their reactions with acetaldehyde and acetone, e.g., Sc^{+,79} Ti^{+,341} or Gd⁺ and Pr^{+,103} This is however not necessarily true for formaldehyde, which often gives rise to MH₂⁺ ions, e.g., with Sc⁺⁷⁹ and Gd^{+,103} thus the strength of two M⁺-H bonds may in combination with CO even outweigh that of a M⁺-O bond with H₂. Quite similarly, Os⁺ forms 75% OsCO⁺ and 25% OsH₂⁺ with CH₂O; however, with CH₃CHO, OsCH₂⁺ is the sole product.¹²⁴ A 1:1 formation of OsCH₂⁺ and OsCHD⁺ from CH₃CDO indicates that this reaction proceeds via decarbonylation and involves fast and reversible α -hydrogen shifts in the hydrido-methyl intermediate.¹²⁴

The difference in the ionization energies is held responsible for contrasting UV-photodissociation results for Ag(CH₃COCH₃)⁺ versus Al(CH₃COCH₃)⁺. The latter complex undergoes simple ligand detachment, while for Ag⁺ photoinduced charge transfer is possible and affords acetone ions and by dissociative charge transfer acetyl ions.³⁴² This latter reaction also gives an upper limit for $D^{\circ}(Ag^{+}-acetone)$.^{342b}

The chemistry of medium-sized ketones with Fe^{+ 42g,74,335} and Co^{+ 42g,336,343} is also dominated by C–CO insertions. Yet, the migratory deinsertion³⁴⁴ $117 \rightarrow 118$ is now in competition with β -hydrogen shifts from R or R' which finally yield alkanes, alkenes, or aldehydes by reductive elimination; loss of CO is generally absent. Dehydrogenation is observed as well, and for 2-pentanone/Fe⁺ it has been shown by ²H labeling that remote functionalization is operative and is also responsible for the C₂H₄ loss.³³⁵ Methyl-branched ketones are observed to react via C–C insertions, β -H shifts, and reductive elimination of CH₄.^{74,335,336} Allyl complexes are postulated as important intermediates in the reactions of Fe⁺, e.g., after dehydrogenation allylic C-C insertion precedes decarbonylation.³³⁵ Cu⁺ is reported to react with linear ketones by either loss of H_2O and diene-complex formation, or by cleavage of the substrate into an alkene and an enol and competitive ligand loss. Mechanisms devoid of metal-ion insertions are suggested and in analogy to the reactions of alkali-metal ions in section VII.A termed "dissociative attachment".³⁴⁰ For branched ketones, $CuCH_3$ formation effectively competes with these reactions.^{335,340} The group 13 ions Al⁺,

Ga⁺, and In⁺ only form adduct complexes with ketones. 42g,301

For several linear ketones, ranging from heptanone to undecanone, extensive ²H- and ¹⁸O-labeling studies permitted detailed mechanistic insights about the reactions with Fe⁺. For these substrates C-CO insertions are completely absent and remote functionalization is the only mechanism still being operative. The symmetric 4-heptanone served to determine kinetic isotope effects; all steps in Figure 17 (X = C₃H₇CO, R = H) were found to be rate determining, except for the C-H insertion.^{345,346} Exactly paralleling the behavior of nitriles, for longer-chain ketones the C-H insertion not only affects the ω -CH₃ but also the (ω - 1)-CH₂ group, affording propene and H₂ from the (ω - 1)/(ω - 2) position. Fe⁺ generates H₂ from 4-octanone and 4-nonanone exclusively from the longer chain and with preferential formation of 8-membered metallacycles.³⁴⁶

Another analogy to nitriles is the double remote functionalization of ketones reacting with Fe⁺. By use of ²H and MS/MS techniques it could be shown that C_2H_6 loss from 5-nonanone is actually due to consecutive loss of first C_2H_4 from one chain followed by dehydrogenation of the other chain.^{290,346} Just as for the nitriles the reversed sequence could be excluded. Loss of 30 and 44 amu from 6-undecanone similarily arises from loss of first C_2H_4 or C_3H_6 followed by dehydrogenation of the $(\omega - 1)/(\omega - 2)$ position of the alternate chain. For the asymmetrical 4-nonanone C_2H_4 exclusively stems from the shorter chain but H_2 is provided from both, now identical chains, demonstrating that the hydrogen rearrangement in the course of $68 \rightarrow 69$ is fast compared to the subsequent second C-H insertion.³⁴⁶

2-Hexanone and 4-heptanone reacting with Fe⁺ under FTICR conditions give rise to products which are all due to initial remote functionalization; yet, multiple losses are observed by subsequent decomposition of the primary products.³⁴⁷ Some of the final products arise by double remote functionalization. Multiple losses and C-C cleavage products are completely suppressed by forming "colder" Fe(ketone)⁺ collision complexes by means of ligand substitution (see section VIII.E).³⁴⁷

The analytical utility of the reactions of bare metal ions with aldehydes, ketones, esters, and ethers has been evaluated in several studies. As a test for simple cationization the group 11 ions Cu⁺-Au⁺ were reacted in a spark source with several compounds, but owing to the presence of excited states under the experimental conditions many products were formed which further differed from ICR results.³⁴⁸ By employing pattern recognition techniques to distinguish ketones, aldehydes and ethers, several metal ions were evaluated for use as chemical ionization reagents. The results reflect several inherent properties of the individual ions, e.g., while Cr^+ mainly gives rise to adduct complexes, Cu^+ does only so with ketones and mainly forms CuH with aldehydes, and the oxygen affinity of Sc⁺, Y⁺, and La⁺ leads to abundant MO^+ ions.^{349–351} MO^+ ions are also the exclusive products for several aldehydes and ketones studied with $Ti^{+ 42g,341}$ and $V^{+,42g}$

2. Cyclic Ketones

Cyclic ketones are of special interest as decarbonylation might give rise to metallacycle formation, therefore they have been studied in more detail with quite a variety of mass-spectrometric techniques. Fe⁺, Co⁺, and Ni⁺ are the only metal ions that have been investigated. All three of them react with cyclobutanone as shown in eqs 63 and 64; Fe⁺ in addition produces a small amount of $FeC_2H_4^{+.207,214,218,268}$

$$M^+ + c - C_4 H_6 O \rightarrow M C_3 H_6^+ + CO$$
 (63)

$$\rightarrow MCO^+ + C_3 H_6 \qquad (64)$$

With regard to the structure of the $MC_3H_6^+$ ions, there is agreement that Fe⁺ forms stable ferracyclobutane ions 33, while the initially formed metallacycles of Co⁺ and Ni⁺ at least partly isomerize to the thermodynamically more favorable propene complexes 13. This has been demonstrated with H/D exchange experiments, employing C_2D_4 ,²⁶⁸ in ligand-exchange^{207,218} and CID studies,^{207,214,218} as well as from kinetic energy release distributions.²¹⁴ The identity of the C_3H_6 neutral eliminated in eq 64 differs, depending on the history of the precursor ions. Metastable loss of cyclopropane, $c-C_3H_6$, from M($c-C_4H_6O$)⁺ complexes (M = Fe, Co) is associated with a large kinetic energy release, indicating a substantial barrier for the reverse reaction. On the other hand, $MC_{3}H_{6}^{+}$ ions, formed in the ion source from M⁺ and cyclobutanone, unimolecularly exclusively lose the thermodynamically more stable propene as indicated by the small average kinetic energy release.²¹⁴

Decarbonylation of cyclopentanone by Fe^+-Ni^+ produces stable metallacyclopentanes 18, as was shown by CID and ligand-exchange experiments (see above).^{33v,74,105,177,178,207,218,335,336} Further products are H₂, CO/H₂, and CO/C₂H₄; the mechanism which applies for the consecutive losses has already been presented in Figure 12 and discussed in section IV.D.

Cyclohexanone- $\alpha, \alpha' - d_4$ with Fe⁺ produces mainly H₂ and H₂/CD₂CO.^{33v,335} Initial C-CO insertion, β -H shift and allylic C-H activation generates H₂; this product partly decomposes further by β -CC cleavage to afford Fe(butadiene)⁺ by loss of ketene. An alternative mechanism involving electrocyclic processes has also been suggested.^{33v} Decarbonylation is only a minor process in this system (3%).

Norbornanone upon reaction with Fe⁺ shows loss of CH_2CO/H_2 as well as decarbonylation combined with dehydrogenation.^{33v}

3. Carboxylic Acids and Their Derivatives

Carboxylic acids have only been studied with Co^{+343} and Cu^{+} ;³⁴⁰ loss of H₂O and MH₂O⁺ formation are the major processes for Co⁺ and the exclusive reactions of Cu⁺. With increasing chain length, again, a chemistry which is more "alkane-like" is observed, C–C insertions being operative.³⁴³ Functionalized acids show a mixture of the individual group reactivities and the preferential site of Co⁺ attack decreases in the row COOH > Br > Cl > SH > OH > CO > H.³⁴³

Cu⁺ induces cleavage of esters $\text{RCO}_2\text{R}'$ into alcohol/ketene and acid/alkene pairs, with all four possible complexes observed. Absence of aldehyde losses has been interpreted as an absence of C-CO insertion, and thus mechanisms avoiding Cu⁺ insertions have been suggested and referred to as dissociative attachment. Besides, RCO_2^- abstraction with concomitant R^{/+} formation is noted and increases with the stability of R^{/+.340} Al⁺ similarly produces Al(R'OH)⁺ by loss of ketenes and very small amounts of RCO⁺ by alkoxide abstraction,^{300,301} while Ga⁺ and In⁺ only form the adduct complexes.³⁰¹ Ti⁺ is unreactive with esters.³⁴¹

Carboxylic acid halides react with $Li^{+,274,293,294,297}$ Fe^{+,297} or Co^{+ 297} either by loss of HX or by formation of LiX and are inert with Na^{+,274}

D. Ethers

The chemistry of ethers is dominated by C–O insertions for most transition-metal ions studied so far; subsequent β -hydrogen shifts from both sides are assumed to explain the losses of alkenes, alcohols, and alkanes from acyclic ethers. For instance, besides a small amount of dehydrogenation only C_2H_4 , C_2H_6O , and C_2H_6 are generated from Fe⁺ reacting with Et_2O .^{196,335,352} All of them may be explained by the outlined mechanisms. The same products are formed by Co⁺ and Ni⁺, but in addition, hydride abstraction is noted.^{196,325} Interestingly, Co⁺ produces about 30% CoH with Et₂O, Ni⁺ already 81% NiH, and for Cu⁺, CuH is the exclusive product with all ethers besides the adduct complex.^{335,350} In the second row, MH formation rises similarly from Ru^+ (1%) over Rh^+ (17%) to Pd^+ (100%).¹⁹⁶ Even Al⁺ affords loss of C₂H₄ from Et₂O but is otherwise unreactive with Me_2O , t-BuOMe, and MeOC₂H₃.300

Exceptions from the general mechanism are noted for Sc⁺ which yields again mainly ScO⁺, but also ScOH⁺ and ScCH₂O⁺, from ethers.³⁵⁰ Ti⁺, if it reacts at all, with ethers also exclusively forms TiO⁺.³⁴¹ In a study of Fe⁺ and Cr⁺ reacting with two polyethers, the products formed from triethylene glycol dimethyl ether could still be described by C-O insertion/ β -H shift sequences, yet, for the cyclic 12-crown-4 "double metal insertion/double β -H shift processes" were proposed.³⁵² Fe⁺ ³³⁵ and Co⁺ ³²⁵ were studied with tetrahydrofuran; both ions afford loss of H₂O and of CH₂O; Co⁺ in addition forms CoH. Two mechanisms have been suggested, both with initial C-O insertion.

Ethylene oxide has been used frequently to derive $D^{\circ}(M^{+}-CH_{2})$ and $D^{\circ}(M^{+}-O)$ bond dissociation energies in ion-beam instruments (M = $Cr^{+,208,339}$ Mn^{+,189} Co^{+,210,211} Ni^{+,211,212} Cu^{+,211}), or to produce MCH₂⁺ alkylidene ions for further investigations in ICR instruments ($M = Mn^+$,³⁵³ Fe⁺,^{105,354-356} Co⁺,^{105,354-356} Rh^{+ 140}). Usually, the two possible metallacycles which arise from C-O or C-C insertion are invoked as reaction intermediates; retro-[2 + 2] reaction affords C_2H_4 or CH_2O loss, respectively. Interestingly, iron atoms in a matrix were also found to spontaneously insert into the C-O bond of ethylene oxide to yield ferraoxetane^{357a} which upon UV photolysis rearranged to $FeO(C_2H_4)$.^{357b,c} For Co^+ and Ni^+ , loss of CH_4 , i.e., MCO^+ formation, is an important exothermic process, too.^{210–212} Metal ion induced isomerization of ethylene oxide to acetaldehyde has been suggested to explain this product. The only exothermic reaction for Cu⁺ is hydride abstraction which, however, must afford acetyl ions for thermodynamic reasons.²¹¹

E. Aromatic Compounds

Only a few aromatic compounds have been studied so far, all of them are benzene derivatives, and already the first study in 1978 dealt with the most intensely employed class, viz. halobenzenes. Ridge and coworkers observed the formation of a benzyne complex

Figure 30. Proposed structures of the products that arise from the consecutive reaction of phenyl halides with transition-metal ions M^+ .

upon reaction of Fe⁺ with fluoro-, chloro-, and bromobenzene (eq 65, n = 1).³⁵⁸ The Fe⁺-benzyne complex

$$M(C_6H_4)_{n-1}^+ + C_6H_5X \rightarrow M(C_6H_4)_n^+ + HX$$
 (65)

was found to react similarly (n = 2). Instrumental limitations precluded the observation of further reactions, but in more recent FTICR instruments the reaction could be followed up to n = 7 for X = Cl, Br, but it stops at n = 2 for $X = F^{359-361}$ Coupling of the C₆H₄ units may be inferred from the observation of oligophenylene ions $C_{6n}H_{4n}^{+}$, arising from secondary reactions,³⁵⁹⁻³⁶¹ or as CID products. CID upon $FeC_{6n}H_{4n}^{+}$ affords only Fe⁺ for n = 1, but exclusively $C_{6n}H_{4n}^{+}$ for n = 2-4.361 Structures 121-123 (Figure 30) have been suggested for n = 1-3 and analogous ones may be drawn for larger values of n. Iodobenzene behaves differently, $FeC_6H_5^+$ being the sole product.³⁵⁸⁻³⁶⁰ FeI⁺, reported earlier as a primary product, is probably a secondary product, arising from $FeC_6H_5^+$ reacting with iodobenzene to yield FeI⁺ and biphenyl.³⁵⁹ Equation 65 was also noted for Ti⁺ (X = Cl; n = 1-3)³⁰² and Ni⁺ (X = Br, I; n = 1),³⁶² while Ni⁺ ³⁶² and Cu⁺ ³⁰⁷ only form the chlorobenzene adduct-complexes. Phenol also loses H_2O in the reaction with Fe^+ (X = OH; n = 1, 2),³⁶⁰ but all other phenyl derivatives studied so far do not form any benzyne complexes.

Benzene itself is unreactive with Ti⁺,^{363a} V⁺,^{363a} Cr⁺,^{363a} Mn⁺,^{363a} Fe⁺,³⁶⁰,^{363a} Co⁺,^{363a} Ni⁺,^{33w},³⁶²,^{363a} Cu⁺,³⁰⁷,^{363a} Mo⁺,^{363a} Ag⁺,^{33w} and W⁺,^{363a} but is dehydrogenated by Sc⁺,^{42e} Nb⁺,¹¹⁴,^{363a} and Ta⁺;¹²⁵ the latter ion affords loss of C₂H₂ and C₂H₄ as well. Surprisingly, the thus formed Sc⁺-benzyne ion can be hydrogenated by H₂ to form presumably Sc⁺-benzene.^{42e} UV photodissociation of Al(C₆H₆)⁺ gives ligand detachment only, while several transition-metal complexes M(C₆H₆)⁺ (M = Ag, Cu, Fe), owing to the lower ionization energy of M, undergo photoinduced charge transfer (CT) to C₆H₆⁺,³⁴² Au⁺, in the reaction with benzene, even forms small amounts of the CT product directly, aside from the adduct.^{11,364} Benzene clusters (C₆H₆)_n have been reacted with several metal ions, and mainly M(C₆H₆)_m⁺ ions resulted; however, Y⁺, Nb⁺, and Ta⁺ also formed fragment ions M(C₆H₆)(C_xH_y)^{+,363b} Several benzene bond dissociation energies, D^o(M⁺-C₆H₆) and D^o(M-(C₆H₆)⁺-C₆H₆), have been determined by photodissociation.^{341,105,342b}

Toluene is inert with V⁺,^{363a} Fe⁺-Ni⁺,^{257,360,362} Cu⁺,^{363a} and Nb^{+ 363a} but is dehydrogenated by Rh⁺;²⁵⁷ from CID experiments, which afforded exclusively RhC⁺, a RhC-(C₆H₆)⁺ structure was inferred for the product. Yet, in another study by the same authors the latter structure could be excluded and now a phenyl-alkylidene structure was considered to be more likely.³⁶⁵ Similar to ScC₆H₄⁺ the RhC₇H₆⁺ complex may be hydrogenated by H₂ or C₂H₆ to furnish RhC₇H₈⁺, probably the toluene complex.³⁶⁵ Au⁺, besides the predominant chargetransfer reaction, affords $C_7H_7^+$ by hydride abstraction; from the study of secondary reactions 90% benzyl and 10% tropylium structure were suggested for this ion.¹¹ Ethylbenzene, which is dehydrogenated by Fe⁺,³⁶⁰ similarly affords hydride and methanide abstraction with Au⁺ but cleavage to C_2H_4 and C_6H_6 is also observed.¹¹ Photodissociation of Ag(toluene)⁺ yields only $C_7H_8^+$, from which $D^{\circ}(Ag^+-C_7H_8)$ was obtained as an upper limit.^{342b}

Several phenyl compounds have been studied with Fe^{+360} and Ni^{+.362} Both ions readily insert into benzylic bonds; products are formed by subsequent β -H shifts producing, e.g., CH₂O from C₆H₅OCH₃, CH₄ from C₆-H₅CD(CH₃)₂, or C₃H₆ from *n*-C₄H₉-C₆H₅. Benzoyl compounds are decarbonylated, and benzylic substrates often yield C₆H₅CH₂⁺ ions. The integrity of the phenyl group is only affected in case of nitrobenzene which forms MC₅H₅⁺ via loss of NO/CO.^{360,362} Pentafluorophenyl compounds behave differently, they often give rise to the formation of FeF₂ neutrals.³⁶⁰

Differentiation of disubstituted benzene derivatives could be accomplished with Fe⁺; three classes of substrates emerged.³⁶⁶ For some compounds all three isomers could be identified by either their primary or their secondary reactions, for others only the ortho isomer could be distinguished from meta and para, and the xylylenes could not be distinguished at all. The unique position of the ortho isomer results most likely from cooperative effects, furnishing chelated products. The para isomers showed the individual reactivities of their substituents, and the meta compounds revealed a mixed behavior.³⁶⁶

F. Others

1. Silicon Compounds

Only silanes have been studied so far with bare metal ions. Silane itself is dehydrogenated by Ti⁺,³⁶⁷ Co⁺,³⁶⁷ Ni⁺,³⁶⁷ and Y⁺.³⁶⁸ Os⁺ even double dehydrogenates SiH₄, forming the osmium silicide OsSi⁺.¹²⁴ V⁺ and Fe⁺ do not react with SiH₄, and Cr⁺ is even unreactive with all silanes, similar as toward alkanes.³⁶⁷ CID upon CoSiH₂⁺ reveals its silylene structure, Co⁺=SiH₂, which has been described in terms of a σ -donor/ π -acceptor bonding.³⁶⁷ The facility of this 1.1 elimination is probably due to the fact that loss of H₂ from SiH₄ requires only 61 kcal mol⁻¹, compared to 112 kcal mol⁻¹ in the case of CH₄.

Methylsilanes $SiH_n(CH_3)_{4-n}$ give rise to losses of H_2 and CH_4 upon reaction with Ti⁺, V⁺, Fe⁺, Co⁺, Ni⁺, and Rh⁺.^{196,367} ²H labeling proves the silylene-complex formation through 1.1 eliminations.³⁶⁷ Co⁺ and Ni⁺ with $SiH(CH_3)_3$ mainly react by hydride abstraction and with $Si(CH_3)_4$ exclusively by methanide abstraction.^{196,367} Methanide abstraction is also a minor process which is observed for $CH_2(Si(CH_3)_3)_2$ with Fe⁺ and $Co^{+.332a}$ Os⁺ affords losses of CH_4/H_2 and $2H_2$ with SiH₃CH₃.¹²⁴ While for Fe⁺-Ni⁺ reacting with Si₂(CH₃)₆ only the Si-Si cleavage products $SiH(CH_3)_3$ and Si(C- H_3)₄ are observed, for Ti⁺ and V⁺ in most of the various products this bond remains unaffected, despite of its weakness.³⁶⁷ Si(CH₃)₄ from the reaction of Fe^+ with CH₂(Si(CH₃)₃)₂ does not arise from CH₂-Si insertion/ β -H shift since for the CD₂ analogue no deuterium incorporation is observed.^{332b} Thus, either a β -CH₃ or a β -Si(CH₃)₃ shift is operative.

Several products arise from the metastable decays of Fe⁺/n-heptyltrimethylsilane complexes.³⁶⁹ Insertion of Fe⁺ into the $C_{(\alpha)}-C_{(\beta)}$ bond is favored, probably due to the β -silicon effect.²⁶⁵ β -H shift affords Si(CH₃)₄; the reaction is specific, as shown by ²H labeling. Insertion into the $C_{(\beta)}-C_{(\gamma)}$ bond and subsequent β -H shifts from both sides yield Si(CH₃)₃C₂H₅, C₃H₈, and C₅H₁₂; H₂ and SiH(CH₃)₃ specifically originate from $C_{(\alpha)}/C_{(\beta)}$. C₂H₄ is provided equally from $C_{(\alpha)}/C_{(\beta)}$ and $C_{(\gamma)}/C_{(\delta)}$; a ferracyclopentane intermediate is suggested to account for this rapid equilibration of the CH₂CH₂ units.

2. Nitrogen and Phosphorus Compounds

Except for the nitrogen compounds discussed earlier, nitroalkanes, alkyl nitrites, isocyanates, and aldimines have been studied.

Several products arise from the reactions of Fe⁺-Ni⁺ with methyl nitrite.^{338,370} Fe⁺ and Co⁺ react almost identically, with loss of NO and concomitant MOCH₃⁺ formation predominating. For Ni⁺ this ion is also formed, yet, a major part undergoes further loss of H₂ to NiCHO⁺. CID upon MOCH₃⁺ affords MH⁺, which is also observed as an important primary product, and three H/D exchanges are observed with C₂D₄, indicating either a H-M⁺-(OCH₂) structure or a rapid equilibrium with M⁺-OCH₃. Cleavage of the weak O-NO bond is also important in the reactions with 1-butyl nitrite, where losses of NO, NO/H₂, or NO/2H₂ are major processes for Fe⁺-Ni⁺.^{370,371} Abundant MCH₂NO₂⁺ products are found for Co⁺ and Ni⁺, indicating that radical losses may be favored over β -H shifts for C-C insertion intermediates in some cases.

Ni⁺ is unreactive with nitromethane, Fe⁺ and Co⁺ mainly produce $MOCH_3^+$, besides MO^+ and $MOH^{+.338,370}$ A metal-assisted nitro-to-nitrite isomerization has been suggested to account for the main product while $CH_3N-MO_2^+$ is believed to be an inter-mediate for the other ions. Several other nitroalkanes have been studied with Fe⁺-Ni⁺, and it could be concluded that isomerization becomes less favorable with increasing chain length.^{370,371} Insertions into C-H, C-C, C-N, and N-O bonds are proposed to explain the multitude of products which are formed. For example, MCH₂NO₂⁺ ions are assumed to arise from C-C insertions with subsequent radical losses, indicating, similar to the 1-butyl nitrite case above, that β -H shifts are disfavored. In general, Ni⁺ seems to prefer C-N insertion and Fe⁺ C-C and N-O insertion, with Co⁺ being intermediate. Alkyl ions that arise from loss of MNO_2 are frequently observed and drastically gain in importance for branched nitroalkanes; Ni⁺ yields the highest amount of these ions and is also observed to form abundant NiHNO₂⁺ ions. While those were explained by invoking a C-N insertion/ β -hydrogen shift mechanism,^{370,371} the simultaneous formation of alkyl ions could indicate that in fact the ion/dipole mechanism (analogous to Figure 22) might be operative.

Some other metal ions have been studied with methyl nitrite and nitromethane.³³⁸ In line with the increased tendency of second-row ions for dehydrogenations, the reactions of Rh⁺ and Pd⁺ with methyl nitrite produce higher amounts of MOCH⁺ ions by loss of NO/H₂ than those of their first-row congeners Co⁺ and Ni⁺. But

while for the first-row ions less than 10% NO retention obtained, for Rh⁺ and Pd⁺ more than 50% of the products retain NO as MNO⁺ or MHNO⁺ ions; CID upon the latter affords MH⁺. Cu⁺ yields mainly and Ag⁺ exclusively MOCH₂⁺ with methyl nitrite. CuOCH₃⁺, which is the other product for Cu⁺, does not exchange its hydrogens with D₂ or C₂D₄, possibly indicative of a Cu⁺-OCH₃ structure. Cu⁺ does not react with nitromethane and Rh⁺ and Pd⁺ afford MNO⁺ ions as sole products.³³⁸

Isopropyl isocyanate has been studied in particular depth^{372,373} as some data was available for its catalyzed and uncatalyzed decomposition. Bock and Breuer reported that the uncatalyzed pyrolysis of $i-C_3H_7NCO$ begins at 920 K and yields propene and isocyanic acid (eq 66).³⁷⁴ In contrast, Ni_x clusters on carbon as sup-

$$i-C_3H_7NCO \rightarrow CH_3CH = CH_2 + HNCO$$
 (66)

port (Ni_x/C_{∞}) are able to catalyze at 500 K the decomposition of the substrate to carbon monoxide, methane, and acetonitrile (eq 67); most likely this reaction proceeds via surface-bound nitrenes.³⁷⁴

$$i-C_{3}H_{7}NCO + Ni_{x}/C_{\infty} \rightarrow CH_{3}CN + CH_{4} + CO + Ni_{x}/C_{\infty}$$
(67)

Yet, Ni⁺ treated with i-C₃H₇NCO did not afford a similar cleavage but instead gave propene and HNCO (eqs 68 and 69).^{372,373} Cr⁺, Mn⁺, Fe⁺, Co⁺, Cu⁺, and Zn⁺

$$Ni^{+} + i - C_{3}H_{7}NCO \rightarrow Ni(HNCO)^{+} + C_{3}H_{6} \quad (95\%) \quad (68)$$

$$\rightarrow$$
 Ni(C₂H_c)⁺ + HNCO (5%) (69)

showed strictly analogous behavior with at least 80% propene loss. ²H labeling revealed that a specific 1.2 elimination was operative and that the kinetic isotope effects for both pathways were identical, respectively, and all in the range between 1.2 ± 0.1 and 1.6 ± 0.1 . The reactions of Ti⁺ and V⁺ with *i*-C₃H₇NCO substantially differed from those of Cr⁺-Zn⁺, with 57% (Ti) and 74% (V) of the products being formed according to eq 70. CID and ²H-labeling studies were in support

$$M^{+} + i - C_{3}H_{7}NCO \rightarrow M(CH_{3}CN)^{+} + CH_{4} + CO$$
(70)

of acetonitrile complexes, formally generated in a specific 1.1 elimination. The first step of the mechanism is believed to be loss of CO and nitrene-complex formation, in analogy to the surface-catalyzed process³⁷⁴ and general knowledge about condensed-phase chemistry of isocyanates with transition-metal complexes.^{375,376} The question of if C-H or C-C activation precedes could not be resolved, despite the labeling. The different outcome of the reaction for early versus late first row transition-metal ions is explained by the nitrene binding energies which are quite high for Ti⁺ $(D^{\circ}(\text{Ti}^{+}-\text{NH}) = 111 \pm 3 \text{ kcal mol}^{-1322})$ and V⁺ $(D^{\circ}(V^{+}-NH) = 99 \pm 4 \text{ kcal mol}^{-1 \text{ 107}})$, but significantly lower for the other metal ions. $D^{\circ}(Fe^+-NH) = 54 \pm 14$ kcal mol^{-1,319} and the absence of NH₃ dehydrogenation for Cr⁺-Cu^{+ 55,319,320,321a,b} could furthermore indicate that $D^{\circ}(M^{+}-NH) < 96 \text{ kcal mol}^{-1}$, respectively, if no barriers are present. It was thus concluded that initial nitrene formation was the crucial factor. Transcribing this into the condensed phase would imply that catalysts with high binding energies for surface nitrenes³⁷⁷ should work best for the production of acetonitrile.

Figure 31. Mechanism for the dehydrosulfurization reaction of butyl isothiocyanate with Fe⁺.

²H labeling on two aldimines R^1N —CHR² showed that Fe⁺ exclusively reacted via remote functionalization to produce hydrogen and alkenes and via double remote functionalization to afford C_2H_{2n}/H_2 .³⁷⁸ Activation of R^1 is favored as long as it is longer than R^2 ; for $R^1 = R^2$, R^2 is preferentially attacked.

Reactions of phosphaalkynes³⁷⁹ with bare Fe⁺ have been investigated¹⁸⁵ in order to compare the gas-phase behavior of phosphaalkynes RC=P with that of nitriles RC = N and alkynes RC = CH. In view of the closer analogies of RC = P with RC = CH rather than RC = Nin the condensed phase, in e.g., addition reactions,³⁸⁰ cycloadditions,³⁸¹ transition metal mediated cyclo-trimerizations,^{382a,b} reactions with carbene complexes,^{382c,d} and last but not least in coordination chemistry,³⁸³ it is not surprising that in their reactivity toward Fe⁺ phosphaalkynes resembles more the corresponding alkynes than the nitriles. While for $t-C_4H_0CN$ and $t-C_5H_{11}CN$ loss of HCN and Fe(HCN)⁺ formation are the most important processes (c.f. section VI.B), from $t-C_4H_9CP$ CH₄, and from $t-C_5H_{11}CP$ CH₄, C_2H_4 , and C_2H_4/CH_4 are produced. As discussed in section V.B, from $t-C_4H_9CCH CH_4$ and CH_4/C_2H_2 are generated, and $t-C_5H_{11}CCH$ affords CH_4 and C_2H_4 . Both tertpentyl "alkynes" afford 6% methane and around 80% ethene, thus insertion into $C-C_2H_5$ is clearly favored over that into C-CH₃, in line with the results of Radecki and Allison.¹⁸² The absence of the consecutive elimination (Figure 19) for $t-C_4H_9CP$ is most likely due to the fact that this would imply loss of the elusive HCP molecule. ²H labeling revealed that all losses are specific for $t-C_5H_{11}CP$. Methane arises from insertion into the "phosphapropargylic" C–CH₃ bond, followed by β -H shift exclusively from the methylene group, indicating a preference of hydrogen transfer from β -CH₂ over β - CH_3 . C_2H_4 is specifically provided by the ethyl group and the arising product partly decomposes further by loss of CH_4 .

3. Sulfur Compounds

Sequential sulfur abstraction is noted for $Ti^{+,384} V^{+,384} Fe^{+,105,308,384-386} Co^{+,105,384,386} and <math>Ta^{+,125}$ if treated with ethylene sulfide (eq 71). Fe⁺ attaches up to six, Ta^{+}

$$\mathbf{MS}_{n-1}^{+} + \mathbf{c} \cdot \mathbf{C}_2 \mathbf{H}_4 \mathbf{S} \rightarrow \mathbf{MS}_n^{+} + \mathbf{C}_2 \mathbf{H}_4 \qquad (71)$$

eight, and V⁺ at least eight sulfur atoms. Al⁺ and Cu⁺, however, only form the ethylene sulfide adduct complexes, albeit at higher pressures.³⁸⁴ Metal sulfide ions can also be formed by reaction of Ni⁺ with methanethiol CH₃SH,^{105,386} or of Ti⁺ or V⁺ with ethanethiol,^{42g} and FeS⁺ is even the sole product in the reaction of Fe⁺ with thiophenol.³⁶⁰ Elemental sulfur S₈, introduced in the FTICR via a heated direct-insertion probe, produces with Fe⁺ in primary and secondary reactions FeS_n^+ ions with n = 1-10.308,385

CID and photodissociation of MS^+ (M = Fe-Ni) affords the bare metal ions so that $D^{\circ}(M^+-S)$ data could be determined.^{105,385,386} Quite surprisingly, the most prominent CID and photodissociation process for FeS_n^+ (n = 2-10) is loss of S_2 . This applies, regardless if FeS_n^+ is formed from ethylene sulfide, from S_8 , or even by sequential CID from FeS_{10}^+ in an impressive MS^7 experiment.^{308,385} Unfortunately, S_2 loss may not be very diagnostic of the structure; for example, FeS_{10}^+ containing only coordinated S_2 units, i.e. $Fe(S_2)_5^+$, would result in the unreasonable oxidation state of Fe(XI); ring structures are therefore more likely.

The majority of the products which arise from Co⁺ reacting with alkanethiols stems from C–S cleavage.³⁴³ Loss of H₂S together with CoH₂S⁺ formation accounts for the majority of the products formed; retention of the olefin is slightly favored for the studied ethane-, propane-, and butanethiols. SH⁻ abstraction also occurs in some cases, but C–C insertions are always of minor importance, except for 2-methyl-1-propanethiol, where 24% C₃H₆, arising from C₍₁₎–C₍₂₎ insertion, is observed. The two main products are explained by C–S insertion/ β -H shift, but again, their formation could equally well be described by the ion/dipole mechanism (c.f. Figure 22); indeed, carbenium ion formation seems to indicate its operation.

The ion/dipole mechanism has also been noted to apply in the reactions of isothiocyanates with bare $Fe^{+.387}$ For ethyl isothiocyanate (C₂H₅NCS) and propyl isothiocyanate $(n-C_3H_7NCS)$ loss of HNCS and Fe-(HNCS)⁺ formation are the most important processes. For $n-C_4H_9NCS$, however, their combined intensity drastically drops to 21% as other processes come into competition. ²H labeling proves that all positions participate to their formation, indicative of the intermediate carbenium ions. HNCS is preferentially retained, but the ratio of HNCS versus alkene loss increases for larger alkenes, demonstrating their higher binding energies. In case of butyl isothiocyanate, remote functionalization may compete; H_2 is exclusively provided by the $\omega/(\omega - 1)$ positions according to the mechanism in Figure 17 and C_2H_4 probably as well, although this could not be tested due to unresolved isobaric losses for the labeled substrates. The most important process, accounting for 35% of the products, is loss of H_2S , whose hydrogen atoms originate by more than 90% from the $\omega/(\omega - 1)$ positions. The first step of the mechanism (Figure 31) is believed to be sulfur abstraction; this is well-precedented for isothiocyanates³⁸⁸ and other substrates³⁸⁹ in homogeneous or heterogeneous catalysis. The next steps proceed analogous to the usual remote functionalization mechanism, except for a *ligated* metal ion being involved; as will be shown below, the same mechanism can indeed be operative for a ligated metal ion. Interestingly, n- C_4H_9NC is also the first isocyanide to show loss of H_2 by remote functionalization with Fe⁺.²⁸⁸ HS⁻ attack at coordinated isocyanides may also give rise to isothiocyanate complexes;³⁹⁰ thus, the reverse reaction is also feasible.

This dehydrosulfurization may be viewed as an intramolecular variant of the important catalytic hydrodesulfurization (HDS),³⁹¹ only that the hydrogen is provided internally from the remote positions in this system. The absence of H₂O loss from n-C₄H₉NCO is explained by the different bond dissociation energies involved, the stronger RNC=O bond seems to prevent the formation of the intermediate analogous to 125 although the overall reaction to generate H₂O is estimated to be 14 kcal mol⁻¹ more exothermic than loss of H₂S.

VIII. Reactions of Ligated Metal Ions

Much less is known about the reactions of *ligated* metal ions with organic substrates in the gas phase than about *bare* metal ions. Thus, the gap between gasphase studies and condensed-phase chemistry of transition-metal complexes with several ligands has yet to be closed. We will discuss several ligands in turn that have already been studied in more detail, but will refrain from reporting the various secondary reactions observed in the course of ICR studies as this data is neither systematic nor is the structure of the primary reaction products always unambiguous.

A. MH^+ and L_nMH^+ lons

FeH⁺, generated by electron impact upon 1,1'-dimethylferrocene, does not react with D_2 in an ion-beam experiment, indicating a significant barrier for formation of an Fe(IV) intermediate.⁸⁵ This is completely in line with FTICR results which show that the roughly thermoneutral exchange of FeD^+ with H_2 to FeH^+ does not occur, in contrast to CoD⁺ and NiD⁺ which undergo this reaction.³⁹² In the latter study MD⁺ ions were generated from CID upon $MOCD_3^+$ which itself is formed in the reaction of M^+ with CD_3ONO (see VII.G.2). H/D exchange of FeH⁺ with C_2D_4 , however, proceeds without any barrier which is explained by facile alkene insertion/ β -H elimination.^{85,392} These results are significant with regard to H/D exchange experiments in FTICR instruments, where D_2 is often not observed to exchange while C_2D_4 or C_3D_6 are more effective reagents.

In their reaction with alkanes the metal hydrides either afford metal-alkyl ions by loss of H_2 , or allyl complexes by further loss of a second molecule H_2 or CH_4 .^{85,392} Alkenes also predominantly produce the allyl complexes by loss of H_2 , while benzene mainly displaces the hydrogen atom.³⁹² With aldehydes, alcohols, or ethers, FeH⁺ showed complex reactivity involving considerable bond rearrangements so that no mechanisms could be determined.⁸⁵ MnH⁺ is reported to react with acetaldehyde to afford MnCH₃⁺ by loss of H_2 and CO.³⁹³ Deprotonation of FeH^{+ 85} and MnH^{+ 393} was used to

Deprotonation of FeH^{+ 85} and MnH^{+ 393} was used to determine the proton affinities of the metal atoms and, with the help of the ionization energies, $D^{\circ}(M^+-H)$ data. Similarly, protonation of several organometallic compounds B, which occurred mostly on the metal center, and subsequent proton-affinity measurements of the resulting BH⁺ ions allowed to derive $D^{\circ}(B^+-H)$ data.³⁹⁴ An average $D^{\circ}(B^+-H)$ of 68 kcal mol⁻¹ resulted, albeit with a rather large range of individual bond strengths. A maximum for $D^{\circ}(Fe(CO)_5^+-H)$ was noted in the first row, and the bond dissociation energy generally increased by going from a first-row compound to its second-row homologue. On the other hand, hydride abstraction by FeH⁺ from neutral acids gave the hydride affinity of this ion.⁸⁵

Strictly analogous to MH⁺, the more ligated Cp₂ZrD⁺ produces exclusively Cp₂ZrH⁺ with ethene and nearly statistical loss of H₂ and HD with propene.^{395,396} CpRhD⁺, generated by deuteronation of CpRh(CO)₂ by D₃⁺, produces the unlabeled Cp₂Rh⁺ and CpRh(η^3 -C₃H₅)⁺ complexes upon reaction with cyclopentane and propane, respectively.^{44a} CpRh(CO)H⁺ exchanges its hydrogen with D₂.^{44a}

B. MCH_3^+ and $L_nMCH_3^+$ Ions

FeCH₃⁺ and CoCH₃⁺ ions have been studied quite thoroughly with alkanes,³⁹⁷ cycloalkanes and -alkenes,³⁹⁸ alkenes and alkynes,²⁶⁹ and some nitrogen bases.³⁹⁹ While FeCH₃⁺ is completely unreactive with acyclic alkanes, CoCH₃⁺ reacts with alkanes larger than ethane by initial insertion into a C-H bond, resulting in CH₄ loss which is followed by dehydrogenation or alkane elimination yielding Co(allyl)⁺ products. With CoCD₃⁺ complete loss of the label was observed. In addition, CoCH₃⁺ undergoes hydride abstraction with all alkanes except for 2,2-dimethylpropane, and the resulting product is described as Co(CH₄).³⁹⁷

FeCH₃⁺ reacts with cyclopropane and -butane but does not so with cyclopentane or -hexane.³⁹⁸ Insertion of FeCH₃⁺ into a C–C bond of cyclopropane produces the metallacyclobutane complex 129, which undergoes ring opening to the alkylidene–alkene intermediate 130; rearrangement to the ethyl–ethene complex 131, which is in rapid equilibrium with 132, precedes ethene detachment (Figure 32).

Besides C_2H_4 , $CoCH_3^+$ reacting with cyclopropane produces CH_4 and H_2 in low intensity while C_2H_4 is the sole product from the reaction of $FeCH_3^+$ with cyclobutane. The suggested mechanism is analogous to that of the bare metal ions (Figure 12). C-C insertion followed by ring opening to $FeCH_3(C_2H_4)_2^+$ and subsequent loss of C_2H_4 produces $FeCH_3(C_2H_4)^+$, whose structure was probed by ²H labeling, CID and ligandexchange experiments.³⁹⁸ For $CoCH_3^+ C_2H_4$ is also the main product but the resulting $CoC_3H_7^+$ ion partly decomposes further via H_2 loss to $CoC_3H_5^+$; CH_4 and $2H_2$ are observed as well. With cyclopentane Co(cy $clopentenyl)^+$ and $CoCp^+$ complexes were formed by loss of CH_4/H_2 and $CH_4/2H_2$, respectively; MCp^+ ions (M = Fe, Co) may also be generated starting from cyclopentene. Cyclohexane affords loss of $CH_4/2H_2$ with $CoCH_3^+$, and the same product ion results from cyclohexene. Both, $FeCH_3^+$ and $CoCH_3^+$ form $HM(C_6H_6)^+$ ions with the latter substrate as evidenced by H/Dexchange and CID experiments.³⁹⁸

The reaction of MCH_3^+ ions with alkenes is particularly important with regard to the mechanism of the Ziegler-Natta polymerization, where migratory insertion of alkenes into metal-alkyl bonds is regarded as

Figure 32. Generalized mechanism for the production of ethene from cyclopropane and FeCH₃⁺ or CoCH₃⁺.

Figure 33. Generalized mechanism for the Markovnikov-type addition of 1-alkenes to $Cp_2 ZrCH_3^+$ (133) leading to allyl complexes.

a key step of the traditional Cossee-Arlman mechanism.⁴⁰⁰ $FeCH_3^+$, however, is unreactive with ethene, and although insertion is observed for $CoCH_3^+$, the product decomposes via loss of H_2 to the stable CoC₃H₅^{+,269} Allyl complexes are also formed by FeCH₃⁺ and $CoCH_3^+$ from other alkenes via loss of CH_4 ; subsequent H_2 or alkene elimination may follow if enough energy is retained after the demethanation. With butadiene CH_3 is added to the substrate, and the resulting pentenyl ion decomposes via loss of C_2H_4 or by dehydrocyclization to cyclopentenyl and cyclopentadienyl complexes. For 2,2-dimethyl-1-butene, which lacks allylic hydrogen atoms, allylic C-C insertion with loss of C_2H_6 is observed; the reaction of labeled $FeCD_3^+$ exclusively produces CD₃CH₃.²⁶⁹ Ethyne inserts into the M^+ - CH_3 bond (M = Fe, Co) to afford vinyl complexes by loss of H_2 ; for propyne, eliminations of C_2H_4 , CH_4 , and H_2 are observed.²⁶⁹

The proton affinity of MCH₂ (M = Fe, Co) was determined by proton abstraction from FeCH₃⁺ and CoCH₃⁺ with several nitrogen bases;³⁹⁹ with knowledge of D° (M⁺-CH₃) this allowed estimations for D° (M-CH₂) of the neutral alkylidenes.⁴⁰¹

Similar to $FeCH_3^+$ and $CoCH_3^+$, $Cl_2TiCH_3^+$ formed allyl complexes with ethene and propene via loss of H_2 ,^{402,403} but $HgCH_3^+$ was insofar unreactive with ethene,⁴⁰⁴ allene,⁴⁰⁵ or other alkenes,⁴⁰⁶ that only the mercurinium adduct ions were formed; the propensity for adduct formation increased with increasing methyl substitution of the double bond.

 $[Cp_2ZrCH_3(THF)]^{+407a-d_f}$ is an ethene-polymerization catalyst in solution, 407f,408 and $Cp_2ZrCH_3^+$ is thought to be the reactive complex; thus it is not uninteresting to look at the reactions of $Cp_2ZrCH_3^+$ (133) in the gase phase. 409 However, similar to other methyl ions, only allyl complexes are formed with ethene and propene via loss of H_2 . 395,396 Statistical loss of H_xD_{2-x} was found for C_2D_4 , in contrast to $Cl_2TiCH_3^+$, which afforded mainly HD. 402 In the reaction with D_2 , via a four-membered transition state and in analogy to the solution chemistry of $[Cp_2ZrR(THF)]^+$, 407c,408b Cp_2ZrD^+ and CH_3D were formed, indicating $D^{\circ}(Cp_2Zr^+-CH_3) < D^{\circ}(Cp_2Zr^+-$ H). 395,396,410 Thus, the addition of ligands leads to a gas-phase bond order typical for condensed-phase complexes (c.f. section IV.A). Quite similarly, CpRh-(CO)CH₃⁺ yields exclusively CpRh(CO)D⁺ with D₂,^{44a} although $D^{\circ}(Rh^{+}-H) < D^{\circ}(Rh^{+}-CH_{3})$.⁴³

With various 1-alkenes $Cp_2ZrCH_3^+$ mainly lost H_2 , and scrambling was noted for the labeled $Cp_2ZrCD_3^+$.³³⁶ A four-membered transition state (134) leads to the Markovnikov-type addition product (135), which decomposes subsequently to the allyl complex 136 (Figure 33).

Allene showed exceptional behavior since mainly adduct formation was observed. 1,1-disubstituted alkenes produced only CH_4 via σ -bond metathesis⁴¹¹ with the allylic C-H bond.³⁹⁶ Here as well, a four-membered transition state is involved, and complete loss of label is found in the case of $Cp_2ZrCD_3^+$. One of the products of $Cp_2ZrCD_3^+$ reacting with isobutene is $Cp_2ZrCH_3^+$, which is best explained by reversible insertion of $i-C_4H_8$ to the Markovnikov product, β -CH₃ shift, and elimination of d₃-labeled isobutene.³⁹⁶ Termination of alkene polymerization via β -CH₃ transfer was also found for $Cp*_2ZrCH_3^+$ ($Cp* = \eta^5 - C_5(CH_3)_5$) in solution.^{186e} Stereospecific behavior was observed for cis and trans alkenes as the cis compounds reacted more slowly than their trans isomers $(k_{cis} \approx 1/_3 k_{trans})$ and produced mainly H₂, in contrast to trans alkenes which nearly exclusively underwent CH_4 loss by σ -bond metathesis.³⁹⁶ Vinyl fluoride and CH₂=CHCF₃ exclusively formed Cp₂ZrF⁺, and from alkynes H_2 and/or CH_4 were produced by insertion or σ -bond metathesis. Observation of the reactions in eqs 72 and 73 shows that the insertion even is reversible;³⁹⁶ in solution, too, [Cp₂ZrCH₃(THF)]⁺ reacts rapidly with 2-butyne to yield the insertion product.407e

$$Cp_2ZrCD_3^+ + HC \equiv C - CH_3 \rightarrow Cp_2ZrCH_3^+ + HC \equiv C - CD_3 (72)$$

$$Cp_2ZrCH_3^+ + HC \equiv C - Ph \rightarrow Cp_2ZrPh^+ + HC \equiv C - CH_3$$
(73)

Related to these latter reactions is eq 74 which was observed in a study of $Cp_2ZrCH_3^+$ with nitiriles.⁴¹² In $Cp_2ZrCH_3^+ + N \equiv C - CD_3 \rightarrow$

$$Cp_2ZrCD_3^+ + N \equiv C - CH_3$$
 (74)

Figure 34. Generalized mechanism for reactions of nitriles with $Cp_2ZrCH_3^+$ (133).

analogy to solution studies^{407c,408b,c,413} a generalized mechanism shown in Figure 34 was suggested, accounting for all observed products. Reaction of 133 with nitriles may either lead to the addition complex 137 or to the insertion product 138. The relative amount of 138 decreases in the row $CH_3CN > C_2H_5CN > n$ - $C_3H_7CN > n - C_4H_9CN > t - C_4H_9CN$. 138 may add another nitrile $(138 \rightarrow 139)$ or may rearrange to 140; the latter may lose acetonitrile to afford 141, which behaves similarly to 133, or, in the case of longer nitriles, lose an alkene or $[C_2H_5N]$. The resulting products are still able to add further nitriles.⁴¹² Very recently, Jordan and co-workers reinspected the nitrile insertion in solution and modified the mechanism.^{207f} In contrast to the gas phase (eq 74), in solution the insertion is irreversible and 137 ($R = CD_3$) does not rearrange to 138. Insertion to yield 139 proceeds via [Cp₂ZrCH₃-(CD₃CN)₂]⁺ instead. For Cp₂TiCH₃⁺, however, the kinetic results could rule out this pathway and were best explained analogous to Figure 34, i.e., $137 \rightarrow 138 \rightarrow$ 139.413d The rate of the insertion step increased in the order $CH_3CN \ll t - C_4H_9CN < n - C_3H_7CN$, though.

C. MX_n^+ Ions (X = F, Cl, OR, NH₂)

1. Metal Halide Ions

The majority of studies about metal halide ions deals with TiX_n^+ (X = F, Cl). With organic halides three general reactions are observed, halogen or halide abstraction (eqs 75 and 76, X, Y = F, Cl) and halogen exchange (eq 77).^{302,303,402} Rarely noted is charge

$$\operatorname{FiX}_{n}^{+}(n=1;2) + \mathrm{RY} \to \operatorname{TiX}_{n}\mathrm{Y}^{+} + \mathrm{R}$$
(75)

$$\operatorname{TiX}_{x}^{+} (n = 1 - 3) + \operatorname{RY} \to \operatorname{TiX}_{n} \operatorname{Y} + \operatorname{R}^{+}$$
(76)

$$\operatorname{TiCl}_{n-x}F_{x}^{+} (n = 1-3) + \operatorname{RF} \to \operatorname{TiCl}_{n-x-1}F_{x+1}^{+} + \operatorname{RCl}$$
(77)

transfer or simultaneous abstraction of XY^- (X, Y = F, Cl) from dihalides.³⁰² Chloride abstraction was also

reported for $AlCl_2^{+,300}$ MgCl^{+,300} and MnCl^{+,304} furnishing the stable neutral di- or trichlorides.

TiCl⁺ reacts with small alkenes via (multiple) dehydrogenation, while TiCl₂⁺ and TiCl₃⁺ mainly afford loss of HCl or HCl/H₂.^{233,402} For longer alkenes all three chlorotitanium ions in addition give rise to C-C cleavages with losses of smaller alkenes observed.²³³ TiCl₄⁺ does not react with alkenes.²³³

TiCl⁺ mainly forms TiClO⁺ from aldehydes, ketones, and ethers; with $CH_3COOC_2H_5$, $Ti(CH_3COO)^+$ is formed.³⁴¹ With small aldehydes or ketones, $TiCl_2^+$ and $TiCl_3^+$ lose HCl to generate enolate ions. With larger representatives, $TiCl_x(RCHO)^+$ ions are formed by alkene loss. Mechanistically, both losses are assumed to proceed not via insertions but via rearrangements of the O-complexed ligands.³⁴¹ Toward ethers and esters both ions display high reactivity forming various products, viz. alkyl radicals and chlorides, HCl, and alkenes; again, no insertion was assumed.³⁴¹ All of the oxygencontaining substrates studied,³⁴¹ as well as CH_3F ,³⁰³ only displace a chlorine radical from $TiCl_4^+$.

The reactions of CrCl⁺, MnCl⁺, and FeCl⁺ with small alkanes have been studied.⁴¹⁴ FeCl⁺ was completely unreactive, and MnCl⁺ only produced Mn(alkane)⁺ adducts by Cl[•] displacement. CrCl⁺ was inert with propane, but dehydrogenated n-butane and isobutane and afforded CH_4 from neopentane. This, as compared to the unligated metal ions, unusual behavior was explained by the bonding situation of the reacting species. For FeCl⁺ and MnCl⁺ an empty p orbital on chlorine overlaps with a filled metal s orbital to form a covalent σ -bond, therefore the two ions have no energetically available electrons left for oxidative additions. CrCl⁺ has a π -bond at its disposal which is close in energy to the σ -bond; this gives the ion some diradical character and enables addition of CrCl⁺ across a C-H bond to form R-Cr(ClH)⁺ intermediates which rearrange further.⁴¹⁴ A similar explanation was also put forward in a theoretical study on CrCl^{+,109b} FeCl⁺ undergoes a metathetical reaction to FeBr⁺ with CH₃Br.⁴¹⁵

FeI⁺ and FeI₂⁺, generated by electron impact on Fe(CO)₄I₂, do not react with pentane; with 1-pentene FeI⁺ induces loss of H₂ and of C₂H₄ while FeI₂⁺ still does not react. Both ions afford cleavage of 2-propanol into C₃H₆ and H₂O whereby loss of the alkene is favored, respectively.⁴¹⁶

2. Metal Hydroxide and Alkoxide Ions

So far ion/molecule reactions have only been studied for FeOH⁺ and CoOH⁺; both ions can be generated from nitromethane (eq 78). Their bond dissociation

$$M^{+} + CH_{3}NO_{2} \rightarrow MOH^{+} + CH_{2}NO \qquad (78)$$

energies $D^{\circ}(M^+-OH)$ have been determined by deprotonation with several bases yielding the proton affinity (PA) of MO. With the help of a thermodynamic cycle D° is available from PA(MO).⁴¹⁷ Furthermore, photodissociation of MOH⁺, affording M⁺ as the sole product, also allowed an independent determination of D° from the threshold energy.⁴¹⁷ Both methods were in good agreement with each other and in line with other experimental data.^{418,419}

With alkanes both ions formed products still containing the OH ligand as well as others, where it was lost to form H_2O .⁴²⁰ The former were shown by CID and ligand-exchange experiments to possess a still intact OH group; no H/D scrambling was observed when MOD⁺ were employed. OH loss was noted more often for FeOH⁺ than for CoOH⁺. FeOH⁺ was unreactive with linear alkanes, except for hexane where rapid adduct formation, besides H_2O and H_2O/H_2 loss, was observed. CoOH⁺, while unreactive with methane and ethane, formed several products with other linear alkanes; C-H and C-C insertions were noted, but loss of H_2O combined with dehydrogenation, forming allyl complexes, was predominating.⁴²⁰ With branched alkanes products of C-H and C-C insertions were found for both ions. FeOH⁺ mainly gave rise to loss of H_2O , but the analogous products for CoOH⁺ retained enough energy to decompose further so that losses of H₂O together with H₂ or small alkanes were the most important processes in this case.

Similar to MCH₃⁺, FeOH⁺ was only able to activate cyclopropane and -butane but was unreactive with cyclopentane and -hexane, while CoOH⁺ reacted with all cycloalkanes.⁴²⁰ Cyclopropane afforded loss of water with both ions, probably by C-C insertion, β -H shift, and reductive elimination. Analogous to MCH₃⁺, MOH⁺ exclusively gave rise to loss of C_2H_4 with cyclobutane, obviously by the same mechanism as MCH₃⁺ and M^+ (Figure 12). The structure of the resulting $MOH(C_2H_4)^+$ ion was probed by CID and ligand-exchange experiments, and no H/D exchange could be observed with D_2 . With larger cycloalkanes, only (multiple) dehydrogenation and mainly loss of H_2O together with H_2 or $2H_2$ was found for CoOH⁺. FeOH⁺, unreactive with cyclohexane, reacted with methylcyclohexane, therefore the C-H bond of the tertiary carbon must be susceptible to an attack. Apart from the adduct complex loss of H_2O and of H_2O together with one or two hydrogen molecules was observed.⁴²⁰

MgOH⁺ has been studied by photodissociation to yield $D^{\circ}(Mg^+-OH)$, and its proton affinity, i.e. $D^{\circ}-(MgO-H^+)$, has been determined by reaction with several bases.³⁰⁹

Iron-alkoxide ions have been studied with ketones and aldehydes,⁴²¹ and processes were discovered which were strictly analogous to the well-known Meerwein-Ponndorf-Verley-Oppenauer reaction. Fe⁺-OCH₃ ions transferred a hydride to the carbonyl carbon of acetone to form Fe⁺-O-*i*-C₃H₇ via loss of CH₂O. The isopropoxide ion reacted further with another molecule of acetone to transfer H⁻ as well as CH₃⁻ to the carbonyl carbon atom, whereby the latter actually dominates. ²H labeling revealed that even a rapid, consecutive hydride/methanide shift occurred within the collision complex. Interestingly, Fe⁺-O-*t*-C₄H₉ reacted by a β -CH₃ with acetone-*d*₆ to generate CH₃-Fe-(CD₃COCD₃)⁺ and not Fe⁺-O-C(CD₃)₂(CH₃) as shown by CID. Similarly, H⁻ and CH₃⁻ shifts could be observed for Fe⁺-OC₂H₅ reacting with acetaldehyde.⁴²¹

3. Transition-Metal Amide Ions

 $\rm FeNH_2^+$ and $\rm CoNH_2^+$ may be formed from MOH^+ and ammonia (eq 79).^{270,422} ~ \rm FeNH_2^+ is also obtained

$$MOH^+ + NH_3 \rightarrow MNH_2^+ + H_2O \tag{79}$$

from FeH⁺ and NH₃.²⁷⁰ By using ion/molecule reaction bracketing techniques the bond dissociation energies $D^{\circ}(M^{+}-NH_{2})$ were derived.⁴²² Both metal-amide complexes react with propene and cyclopropane to the allyl complexes and NH₃. Labeled propene- d_{6} exclusively forms NH₂D.⁴²²

 $D^{\circ}(M^+-NH_2)$ data has also been gained from ionbeam studies with ammonia for M = Sc,³²² Ti,³²² V,¹⁰⁷ Co,^{323a} Ni⁺,^{323b} and Cu⁺,^{323b} and there is also theoretical data available.^{46b}

D. $M = X^+$ and $L_n L'_m M = X^+$ Ions (X = CH₂, O, S, NH)

1. Transition-Metal Alkylidene Ions

Several alkylidene or carbene ions have been studied. The reactions with alkenes in particular have found great interest in view of the potential intermediacy of alkylidene-alkene complexes in olefin metathesis,¹⁹⁹ and in the cyclopropanation²⁰⁰ or Ziegler-Natta polymerization²⁰² of alkenes.⁴²³ MCH₂⁺ ions may be generated in reactions of M⁺ with ethylene oxide, cyclopropane, or cycloheptatriene, as well as from MO⁺ and C₂H₄.

or cycloheptatriene, as well as from MO⁺ and C_2H_4 . The chemistry of FeCH₂⁺ and CoCH₂⁺ has been studied most detailed with acyclic alkanes,³⁵⁶ cyclo-alkanes,³⁵⁴ alkenes,³⁵⁵ and alkynes.²⁵⁵ By also employing the labeled analogues it became evident that $\overline{FeCD_2}^4$ reacted specifically while for CoCD₂⁺ some scrambling was noted. $FeCH_2^+$ reacted with alkanes larger than ethane and $CoCH_2^+$ with alkanes larger than methane.³⁵⁶ In contrast to the bare metal ions, predominantly C-H activation was observed for the alkylidenes but C-C cleavages occurred, too. Loss of CH₄ by sequential C-H activation, β -H shift generated activated alkene complexes which decomposed further. Facile alkylidene-alkyl coupling was postulated for C-C insertion intermediates.³⁵⁶ The products which arose from the reactions with cyclopropane and -butane seemed exclusively due to initial C-C insertions.³⁵⁴ Three decomposition pathways were assumed for the alkylidene-metallacycle complexes formed this way. Incorporation of CH₂ into the metallacycle leads to the next higher ring, i.e., metallacyclopentane or -hexane,

Figure 35. Four types of catalytic cycles achieved in the gas phase for transition-metal oxo ions MO⁺.

which may then decompose. Alternatively, the initially formed metallacycle may open, or a β -hydrogen atom may be abstracted from it; coupling of these fragments with the CH₂ ligand followed. On the contrary, for cyclopentane and -hexane integrity of the rings is mainly preserved. C-H insertion leads to loss of methane which is followed by further dehydrogenation(s) of the activated cycloalkene complexes.³⁵⁴

 $FeCH_2^+$ and $CoCH_2^+$ are converted to bare metal ions by ethene, the identity of the resulting C_3H_6 neutral could, however, not be determined; therefore it is unclear if cyclopropanation actually occurred.355 Employing MCD_2^+ , it could be seen that 20% (Fe) respectively 2% (Co) of the olefin-metathesis products MCH_2^+ were also formed. With propene or isobutene the expected olefin-metathesis products $MC_2H_4^+$ and $MC_{3}H_{6}^{+}$ were indeed observed, but surprisingly no MCH_{2}^{+} resulted from the reaction of MCD_{2}^{+} . CID and ligand-exchange experiments further revealed that the initially formed alkylidene complexes had rearranged to the corresponding alkene complexes.³⁵⁵ Such rearrangements are well-precedented in solution chemistry.⁴²⁴ A variety of products is formed from higher alkenes; olefin metathesis with subsequent alkylidenealkene rearrangement competes with other processes such as dehydrogenation, loss of CH_4 by C-H activation, and others.

Butadiene, apart from the metathesis products, reacted with both MCH_2^+ ions to $M(c-C_5H_6)^+$ and MCp^+ , as shown by CID and H/D exchange experiments. With ethyne and propyne the bare metal ions were exclusively formed.³⁵⁵

 $MnCH_2^+$ behaved strictly analogous to FeCH₂⁺ and CoCH₂⁺ in its reactions with alkenes.³⁵³ Mn⁺ and MnCD₂⁺ were formed with C₂D₄ and MnC₂H₄⁺ and MnC₃H₆⁺ from propene and isobutene, respectively. With isobutene-d₈, correspondingly, no MnCD₂⁺ was observed. The metathesis products were formulated as alkylidenes, but rearrangements to alkene complexes were also considered.

RhCH₂⁺ showed a somewhat different chemistry as encountered for the other three MCH₂⁺ (M = Mn, Fe, Co) alkylidene ions.^{140,142} Upon CID a small amount of RhC⁺ was observed indicating a relative facility of α hydrogen shifts;¹⁴⁰ photodissociation produces Rh⁺, RhC⁺, and RhCH⁺.¹⁴² In addition, unlike the other ions, RhCH₂⁺ reacted with H₂ to Rh⁺ and with CH₄ to Rh⁺ and RhC₂H₄⁺, the latter ion being the ethene complex. Scrambling was observed for RhCD₂⁺ but also rapid formation of RhCH₂⁺ and RhCHD⁺. These ions most likely arise by reversible formation of Rh(CH₃)₂⁺ which undergoes rapid α -elimination back to CH₄ and RhCH₂⁺. Ethane forms only RhC₂H₄⁺ with RhCD₂⁺, besides a small amount of Rh⁺. From C₂H₄, Rh⁺ and RhC₃H₄⁺ were generated, the latter most likely by rearrangement of the initially formed rhodacyclobutane ion to the propene complex with subsequent dehydrogenation. Only 3% of the RhCH₂⁺ metathesis product was formed with RhCD₂⁺. The reaction with propene and cyclopropane resembled those of its cobalt congener, including the ethylidene–ethene rearrangement of the metathesis products, yet, higher amounts of dehydrogenation products were present.¹⁴⁰

NbCH₂⁺ has analogous properties to RhCH₂⁺ with regard to CID, photodissociation, and the reaction with H₂ which affords Nb⁺. With CH₄, NbC₂H₄⁺ is the sole product.¹⁴² LaCH₂⁺, which upon CID only decomposes to La⁺, photodissociates to La⁺, LaC⁺, and LaCH⁺ as well.¹⁴²

Three ligated alkylidene ions have been studied, $(CO)_nMnCH_2^+$ (n = 4; 5)³⁵³ and CpFe(CO)₂CH₂^{+,425} which were obtained by protonation of $(CO)_5MnCH_2F$ and CpFe(CO)₂CH₂OCH₃. Only $(CO)_5Mn^+$ was produced from $(CO)_5MnCH_2^+$ and alkenes, and only CO displacement occurred for $(CO)_4MnCH_2^+$.³⁵³ Similarly, CpFe(CO)₂CH₂⁺ reacted with cyclohexene by CH₂ transfer; adduct formation was noted for NH₃, CH₃CN, and CD₃CDO. An CpFeCOCH₂⁺ ion was formed by the deprotonation as well, but its reactions pointed to a ketene structure, i.e. CpFe(CH₂CO)^{+.425}

2. Metal Oxo Ions

For the production of diatomic transition-metal oxo ions $MO^{+,32g,i,98-104}$ N₂O is the most widely employed reagent (eq 80). FeO⁺ may also be generated from O₃,

$$M^+ + N_2 O \rightarrow MO^+ + N_2 \tag{80}$$

and for highly oxophilic metal ions, such as Ti⁺, V⁺, Zr⁺, or Nb⁺, many other oxygen donors are also suitable, even O₂ or CO₂.^{102,112,426} Metal dioxides MO₂⁺ are formed by N₂O with Ti⁺, V⁺, Zr⁺, and Nb⁺; Cr⁺ even forms the trioxide, CrO₃⁺.^{102b,426} Electron-impact or surface ionization of oxygen-containing, volatile organometallic compounds was also used to obtain MO_x⁺ or L_mMO_x⁺ cations.^{110a,124,314,339,427}

Interest in the chemistry of the oxo ions arises from the possibility to gain information about intermediates in conventional oxidation reactions and from the wish to devise catalytic cycles for the oxidation of simple hydrocarbons or other substrates. In particular FeO⁺ has been used quite often for the latter motive. The first example reported is the catalytic oxidation of CO to CO₂ with FeO⁺ according to cycle A in Figure 35 (M = Fe, A = CO).^{102b,426} Other substrates that served as

Figure 36. Mechanism for the reaction of $ClCrO_2^+$ with ethene.

oxygen acceptor A in A were ethene, propene, allene, ethane, and propane.^{102b,426} With TiO⁺, VO⁺, CrO⁺, ZrO⁺, or NbO⁺, cycle B via the dioxides could also be accomplished.^{102b,426} For ethyne cycle A accounts only for roughly half of the oxidative decomposition, the three-step cycle C is operative as well.^{102b,426}

The catalytic oxidation of C_2H_6 with FeO⁺ was recently rediscovered and studied in more detail.⁴²⁸ FeO⁺ reacts with ethane by 67% to FeC₂H₄⁺, while 12% is directly reduced to Fe⁺ again. Since Fe(C₂H₄)⁺ may be oxidized by N₂O to Fe⁺ with 72% yield, cycle **D** is accomplished (Figure 35); most likely, CH₃CHO is the product of this oxidation. From the determination of the individual rate constants for all steps, it was calculated that one Fe⁺ ion is able to oxidize about 2.5 ethane molecules; this low turn-over number results from the occurrence of side products that function as sinks.⁴²⁸

In 1981 it was reported that the reaction of FeO⁺ with either H₂ or CH₄ afforded FeOH⁺;^{102a} apparently, this initial report was overlooked, and in 1984 Freiser and co-workers claimed that FeO⁺ was unreactive with methane.⁴²⁹ Recent results show, however, that methane may well be oxidized by FeO⁺; CH₃OH and Fe⁺ account for 41% of the products and are formed via cycle A; the main product, however, is FeOH⁺.⁴³⁰ The reactions of FeO⁺ with other alkanes are characterized by initial C-H activation.⁴²⁹ Subsequent β -H shifts and loss of H_2O leave activated alkene complexes, which may decompose further. The observation of radical losses points to C-C activations as well, mainly in cases in which C-H activation leads to intermediates bare of β -hydrogens; the radical-loss products have Fe(OH)-(alkene)⁺ structures, as shown in ligand-exchange experiments, but upon CID may rearrange to $Fe(H_2O)$ -(allyl)⁺. FeO⁺ is generally more reactive than Fe⁺ owing to the greater exothermicity of the water loss.⁴²⁹

Loss of H₂O and H₂O with alkenes is also observed upon reaction of FeO⁺ with 4-heptanone and 5-nonanone.⁴³¹ ¹⁸O and ²H labeling proved that the oxygen of the water molecule lost was exclusively provided by the ionic reagent while the hydrogen atoms derived from the $\omega/(\omega - 1)$ position in the case of the smaller ketone and from the $\omega/(\omega - 1)/(\omega - 2)$ position in the case of the larger substrate. Thus, a mechanism analogous to Figure 31 is operative, with the one difference that the reaction already begins by complexation of a ligated metal ion. The consecutive elimination of H_2O and C_2H_4 , respectively C_3H_6 , also starts by the activation of a remote C-H bond and is followed by β -CC cleavage and loss of the alkene. The second hydrogen for the water is then provided by the $\omega/(\omega - 1)$ position of the other alkyl chain.⁴³¹

The reactivity of Cr⁺ is greatly enhanced by an additional oxo ligand; CrO^+ , although unreactive with H_2 and CH_4 , is reduced to Cr^+ by C_2H_6 .³¹⁴ For other al-kanes several other products are also formed, and ²H labeling revealed intriguing mechanistic details.³¹⁴ H₂, for instance, is formed by multicenter addition of a primary or secondary C-H bond across the Cr+-O bond. β -Hydrogen shifts in the resulting Cr(OH)(alkyl)⁺ intermediates are, however, not followed by reductive elimination of H₂O from the resulting Cr(OH)(H)(alkene)⁺ ions; instead, allylic C-H activation seems to be kinetically favored, and reductive elimination of H_2 produces Cr(OH)(allyl)⁺ complexes. Quite similarly, loss of methane is explained by assuming a β -CH₃ shift in the primary insertion product followed by allylic C-H activation. Loss of C_2H_4 from cyclopropane and -butane is explained by assuming that a C-C bond adds across the Cr⁺–O bond and oxametallacyclopentane or -hexane ions are initially formed; on the contrary, for cyclopentane and -hexane only C-H activation is observed.³¹⁴

With ethene, CrO^+ reacts exothermically to Cr^+ and, on thermodynamic grounds, acetaldehyde; the formation of $CrCH_2^+$ is endothermic and most likely proceeds via a four-membered metallacyclic intermediate.³³⁹ An analogous intermediate has been postulated for the exothermic metathesis reaction of MnO^+ with C_2H_4 to $MnCH_2^+$ and $CH_2O.^{353}$ For other alkenes reduction of CrO⁺ to Cr⁺ is always a major process;³³⁹ besides, allylic C-H activation leads to CrOH⁺, and the resulting Cr-(OH)(allyl)⁺ complex partly rearranges to afford loss of H_2O . For 1-alkenes $Cr(CH_2O)^+$ is observed and points to the formation of oxametallacyclobutane ions.³³⁹ Such an intermediate has also been invoked for the reaction of $ClCrO_2^+$ with ethene which yields $C_2H_3O^+$, $ClCrO^+$, and $ClCrOCH_2^{+,427}$ In line with a proposal by Sharpless et al.432 theoretical studies predict the formation of 150 (Figure 36) owing to the energy

gained upon formation of the CrO triple bond, which consists of two π -bonds and a donor/acceptor σ bond.^{204b,d,i,401c} The retro-[2 + 2] process to CH₂O competes with rearrangement to 151. The reaction of ethylene oxide with ClCrO⁺, which exclusively affords C₂H₃O⁺, shows that formation of 152 from 151 is reversible.⁴²⁷ Furthermore, hydrogen- and hydride-abstraction reactions of CrO⁺ with several saturated and unsaturated hydrocarbons have been used to determine $D^{\circ}(\text{CrO}^{+}-\text{H})$ and $D^{\circ}(\text{CrO}^{+}-\text{H}^{-})$ data.³¹⁴

 $D^{\circ}(CrO^+-H)$ and $D^{\circ}(CrO^+-H^-)$ data.³¹⁴ In contrast to Cr⁺, addition of an oxo ligand to V⁺ does not change the character of the metal very much. VO⁺ gives rise to similar products with alkanes as does V⁺, although reacting slower and showing slightly less multiple losses which is probably due to coordinative saturation.¹¹² The oxygen does not participate as loss of H_2O is endothermic owing to the high $D^{\circ}(V^+-O)$ bond dissociation energy. On the other hand, Ti⁺ and V⁺ react completely different from their oxides with 2-butanone,^{42g} whereas OsO⁺ often forms the same products with several substrates as Os^{+.124} Yet, additional oxygen atoms lead to different behavior as it was evidenced in an investigation on the chemistry of the OsO_x^+ ions (x = 1-4).¹²⁴ OsO_x^+ (x = 1-3) are reduced by molecular hydrogen while OsO_4^+ exclusively abstracts a hydrogen atom. Formation of OsO_4H^+ as the sole product is observed for several other hydrogencontaining substrates and underlines the oxygen centered radical character of OsO_4^+ . Reduction of OsO_x^+ with several oxygen acceptors or hydrogen donors was used to bracket various metal-ligand bond dissociation energies. The mechanism of the different reactions could often be estimated based upon a relative unreactivity of OsO_3^+ , for which oxidative additions are impossible, as this would formally generate Os(IX); four-centered additions were also frequently observed.¹²⁴

Photodissociation of MgO⁺ afforded the bond dissociation energy $D^{\circ}(Mg^+-O)$, while the ionization energy of MgO has been bracketed by reaction of MgO⁺ with several charge-transfer reagents.³⁰⁹

3. Transition-Metal Sulfide Ions

The reactivity of MS^+ (M = Fe-Ni) with alkanes has been studied and compared with the corresponding MO⁺ ions.³⁸⁶ All three sulfide ions react with alkanes larger than methane, primarily by H₂S loss, thus demonstrating a similar preference for C-H activation as other metal-ligand ions. The resulting metal-alkene complex may then decompose further. Less multiple losses as for FeO⁺ are observed for FeS⁺, however, owing to the fact that H_2S loss is less exothermic than H_2O loss. While for FeS⁺ and CoS⁺ the intermediate M- $(H_2S)(alkene)^+$ complexes exclusively lose H_2S , for NiS⁺, H₂S retainment is also observed but decreases with increasing size of the alkane. For branched alkanes C-H and C-C activation is observed, whereby CH₄S loss by C-C activation predominates in cases where no dehydrogenation is possible.

Similar to other reagent ions, cyclopropane and -butane are activated by initial C-C insertion while for cyclopentane, cyclohexane, and methylcyclohexane the integrity of the carbocyclic ring is maintained in the products.³⁸⁶ Ethene is dehydrogenated by FeS⁺ to form $FeC_2H_2^+$ under loss of H_2S , while FeS_2^+ is unreactive with C_2H_4 .³⁸⁵ On the other hand benzene forms the adduct complex with FeS⁺ but displaces S_2 from ${\rm FeS_2^+}.^{385}$

4. Transition-Metal Nitrene Ions

MNH⁺ ions may be formed by dehydrogenation of NH₃ (eq 62) or by reaction of MO⁺ with NH₃ by loss of H₂O.^{124,319} For the oxophilic V⁺, this reaction proceeds in the other direction (eq 81).³¹⁹ VNH⁺ and

$$VNH^+ + H_2O \rightarrow VO^+ + NH_3$$
 (81)

FeNH⁺ react with O₂ to produce MO⁺ ions.³¹⁹ VNH⁺ is unreactive with ethene but reacts with propene mainly to afford dehydrogenation; deprotonation with several bases yielded the proton affinity of VN.³¹⁹ FeNH⁺ forms a variety of products with C₂H₄, all of which are explained by initial formation of a fourmembered metallacycle; upon reaction with benzene, $[C_6H_7N]^+$ is produced by loss of an iron *atom*.³¹⁹ The structure of VNH⁺ has been described as a doublebonded nitrene complex with an electron-deficient nitrogen atom, while FeNH⁺ supposedly is a singlebonded imido complex with an electron-rich N.³¹⁹ OsNH⁺ even dehydrogenates NH₃ to form the dinitrene Os(NH)₂⁺.¹²⁴

E. $MC_x H_v^+$ Ions

1. Alkene Complexes

Alkene complexes of the group 8–10 metal ions $Fe^{+,221}$ Co^{+,222} and Ni⁺²²² have been compared in their reactivity with other alkenes. Aside from simple ligand-displacement and condensation reactions, new products, which were absent for the bare metal ions, were also observed, e.g., dehydrogenation by double allylic C-H activation and concomitant formation of bis(allyl) complexes. These allylic C-H activations are most facile for Co⁺, intermediate for Fe⁺, and the least facile for Ni⁺. Ligand coupling, such as metal-assisted Diels-Alder reactions, was most pronounced for Co-(alkene)⁺, very limited for Fe(alkene)⁺, and virtually absent for the Ni⁺ complexes, which were often unreactive with alkenes.

Fe(alkene)⁺ complexes have been studied with chlorobenzene and afford loss of HCl, or HCl together with hydrogen.⁴³³ This reaction does, however, not proceed via an ethene-benzyne intermediate; ²H labeling proves that the hydrogen for the HCl is exclusively provided by the alkene. Ligand coupling to styrene derivatives occurs, as shown by CID. The reaction commences with C-Cl insertion of Fe⁺ followed by migratory insertion of the alkene into the newly formed Fe-C bond, β -H shift, and finally reductive elimination of HCl. CID and ²H-labeling experiments show that a remarkable selectivity is observed by coupling of the least-substituted carbon with the phenyl ring.

Extraordinary selectivity is also observed for FeL⁺ (L = C_2H_4 , C_3H_6 , and C_4H_6) reacting with ketones.³⁴⁷ While bare Fe⁺ forms several products (see section VII.C), the ligated FeL⁺ ions selectively undergo loss of L and H₂, the latter specifically by remote functionalization of the $\omega/(\omega - 1)$ bonds. The higher selectivity is due to the fact that the Fe(ketone)⁺ collision complex, when generated from FeL⁺, is "colder" by the amount of D° (Fe⁺-L) compared to the directly formed collision complex. While the ethene and propene complexes, besides dehydrogenation and adduct formation, react via simple ligand substitution, butadiene is not directly displaced by the ketones. Nevertheless, a signal for the loss of C₄H₈ is observed; transfer hydrogenation within the Fe(C₄H₆)(ketone)⁺ collision complex takes place and produces butene which eventually is lost. The transferred hydrogens are specifically provided by the $\omega/(\omega - 1)$ positions, thus the situation is completely analogous to FeO⁺ (section VIII.D.2).⁴³¹

Cyclopentadiene complexes are different from those of other 1,3-dienes since they may be in equilibrium with hydrido-cyclopentadienyl complexes. The existence of this equilibrium for $Fe(c-C_5H_6)^+$ and $Co(c-C_5H_6)^+$ $(C_5H_6)^+$ is evidenced in their reaction with NH₃ where displacement of a hydrogen atom and loss of H_2 with concomitant $CpM(NH_2)^+$ formation is observed.^{270,422} This contrasts the behavior of $Rh(c-C_5H_6)^+$ and $Ni(c-C_5H_6)^+$ $(C_5H_6)^+$ where only ligand-displacement and condensation reactions are observed, ruling out CpMH⁺ structures.²⁷⁰ Rh(propene)⁺, which, as five H/D exchanges with D_2 demonstrate, is in equilibrium with H-Rh- $(\eta^3-C_3H_5)^+$, rapidly loses H₂ to generate Rh(NH₂) $(\eta^3 (C_3H_5)^+$, thus indicating that a $Rh(L)H^+$ ion is likely to form $Rh(L)NH_2^{+,270}$ The different character of Fe(c- $C_5H_6)^+$ and $Rh(c-C_5H_6)^+$ is further underlined by their reactions with other substrates, though both complexes will lose H[•] upon photodissociation. $Fe(c-C_5H_6)^+$ reacts with alkanes to form CpFe(allyl)⁺ complexes, as shown by CID and ²H-labeling experiments.⁴³⁴ Rh($c-C_5H_6$)⁺, although it double dehydrogenates cyclopentane to $Rh(c-C_5H_6)_2^+$, will only form $RhCp_2^+$ in a rare photoinduced reaction or upon photodissociation of the $Rh(c-C_5H_6)_2^+$ product.⁴³⁵ In(C₃H₆)⁺ has been suggested and applied as a

 $In(C_3H_6)^+$ has been suggested and applied as a chemical ionization reagent for mixture analysis since it affords cationized sample molecules via ligand exchange.⁴³⁶

2. Benzyne Complexes

Except for the hydrogenation of $ScC_6H_4^+$ (section VII.E),^{42e} only the $FeC_6H_4^+$ benzyne complex has been studied so far; reactions with alkanes³⁶¹ and alkenes⁴³⁷ have been reported. The reagent ion was formed from chlorobenzene (c.f. section VII.E); it does not react with methane and singly dehydrogenates ethane. Other alkanes form a variety of products, which can all be explained by initial C-H or C-C insertion followed by alkyl or hydrogen migration onto the benzyne ligand. For instance, most of the alkanes form $FeC_6H_6^+$ and $FeC_7H_8^+$, presumably the benzene and toluene complexes of Fe⁺. Absence of the $FeC_6H_6^+$ hydrogenation product from $neo-C_5H_{12}$ indicates 1.2 dehydrogenation but ²H labeling reveals reversible steps. FeC₇H₈⁺ is explained by either C-H insertion followed by β -CH₃ shift from the resulting phenyl-alkyl complex and further migration to the phenyl ligand, or, alternatively, by initial C–C insertion, β -H shift from the resulting alkyl o-tolyl complex and migration of the hydrogen to the tolyl ligand.³⁶¹ From the alkenes studied so far, different products were formed in each case.⁴³⁷ $FeC_6H_4^+$ reacts with ethene mainly to the benzocyclobutene complex which partly decomposes to Fe⁺. Both propene and isobutene afford exclusively Fe(toluene)⁺ while from the three linear butenes quite a variety of products are formed among which C_3H_4 , H_2 , and $2H_2$ are dominant. Cyclopentene and -hexene mainly give rise to the $FeC_6H_6^+$ hydrogenation product.

3. Allyl Complexes

Iron and cobalt allyl complexes have been studied so far, and once again the chemistry with alkanes and alkenes has been explored. They are generated either by reacting MX⁺ (M = Fe, Co; X = CH₃, OH) with alkanes to afford M(allyl)⁺, H₂, and HX,^{397,398,420} or directly from MCH₃⁺ and alkenes by loss of CH₄.²⁶⁹ In general, Co(allyl)⁺ is more reactive than Fe(allyl)⁺, and both M(allyl)⁺ react rapidly with alkanes (except CH₄) by C-H activation to produce predominantly H₂ or 2H₂. The structure of the resulting M(allyl)(alkene)⁺ complexes has been probed by CID and ligand-exchange experiments.^{397,420} With cyclopropane and -butane insertion into the C-C bond is assumed and C₂H₄ is lost in both cases, analogous to other M⁺ or ML⁺ systems.^{398,420}

Fe(allyl)⁺ and Co(allyl)⁺ are unreactive with ethene but react with propene and isobutene to produce mainly or exclusively H_2 .²⁶⁹

4. Cyclopentadienyl Complexes

Reactions of $M(\eta^5-C_5H_5)^+$ ions have been observed as early as 1973, when Müller and Goll reported ion/ molecule reactions of CpNi(NO)⁺ and CpNi⁺ with several substrates in the ion source of their mass spectrometer. While many neutrals L, such as H₂O, NH₃, acetone, C₂H₄, or C₂H₂, only formed the CpNiL⁺ complexes, for other substrates, including alkanes, dehydrogenation and C-C cleavage reactions were observed as well.⁴³⁸

A more recent investigation on CpCo⁺ showed that all aliphatic alkanes larger than methane (with the exception of neopentane) are mainly dehydrogenated with only small amounts of products due to C-C cleavages or occasional skeletal rearrangements observed besides.⁴³⁹ As frequently observed in other systems, cyclopropane and -butane react by initial C-C insertion, and cyclopentane and -hexane undergo exclusive C-H activation. CpNi⁺ in a similar manner dehydrogenates $c-C_5H_{10}$ up to two times.^{44a} CpCo⁺ does not react with ethene and slowly dehydrogenates propene and isobutene. Higher alkenes mainly produce H_2 , but in competition to the simple dehydrogenation, skeletal isomerizations followed by dehydrocyclization to cobaltocene (Cp_2Co^+) is observed for C_5 and C_6 alkenes and alkadienes. CID upon CpCo(alkene)⁺ derived from C_5 and C_6 alkanes gives similar results.⁴³⁹ CpFe⁺, formed from FeCH₃⁺ and cyclopentene, dehydrogenates cyclopentene, but only 31% Cp₂Fe⁺ is formed;³⁹⁸ the analogous reaction for cobalt afforded exclusively Cp_2Co^+ .

Decarbonylation of aldehydes by CpNi⁺ according to eqs 82 and 83 has been reported for a variety of different RCHO; the reaction is absent for CH_2O and $CF_3CHO.^{362,440}$ With aromatic compounds, CpNi⁺ of-

$$CpNi^+ + RCHO \rightarrow CpNiCO^+ + RH$$
 (82)

$$\rightarrow$$
 CpNiRH⁺ + CO (83)

ten was found to be unreactive or formed only the adduct complexes; however, with chloro-, bromo-, and iodobenzene $\text{CpNiC}_6\text{H}_4^+$ was formed, benzylamine was

Figure 37. Mechanism for the 4-fold alkylation of cyclopentadienyl complexes CpM^+ (M = Fe, Ni) with halomethanes CH_3X .

one and two times dehydrogenated, and H_2O was lost from PhCH(OH)CH₃⁺.³⁶²

 Cp_2Zr^+ was found to abstract Cl from CCl_4 , CCl_2F_2 , and $CHCl_3$, forming Cp_2ZrCl^+ and thereby placing a lower limit of 81 kcal mol⁻¹ for $D^{\circ}(Cp_2Zr^+-Cl)$.⁴¹⁰

A remarkable alkylation of the cyclopentadienyl ligand has been reported for CpNi⁺ and CpFe⁺ (eq 84, n = 0-3).⁴⁴¹ For unknown reasons, the reaction is much

$$(CH_3)_n C_5 H_{5-n} M^+ + CH_3 X \rightarrow$$

 $(CH_3)_{n+1} C_5 H_{4-n} M^+ + HX$ (84)

more efficient for X = Br than for X = F, Cl, or I and stops after n = 3, i.e., the fifth alkylation is not observed. This latter finding is explained by the mechanism in Figure 37 assuming that exclusively the endocyclic hydrogens can be transferred.

A metal-switching reaction (eq 85) for metal ions reacting with metallocenes was discovered by Freiser and co-workers; besides, the charge-exchange product in eq 86 formed (M = Ti, Rh, Nb; M' = Fe, Ni).^{114,442} Fe⁺ afforded exclusively charge exchange with NiCp₂.⁴⁴²

$$\mathbf{M}^{+} + \mathbf{C}\mathbf{p}_{2}\mathbf{M}' \rightarrow \mathbf{C}\mathbf{p}_{2}\mathbf{M}^{+} + \mathbf{M}' \tag{85}$$

$$\rightarrow Cp_2M'^+ + M \tag{86}$$

In order to obtain information about the barrier in electron-transfer processes, charge-transfer reactions of $Pd(CH_3NC)_3^+$ with $FeCp'_2$ ($Cp' = \eta^5 - C_5(CH_3)_5$)³⁰⁸ and of MCp_2^+ with $M'Cp_2^{+443a}$ and the self-exchange reactions of MCp₂⁺ with MCp₂ (M = Mn, Fe, Co, Ru; Cp = η^5 -C₅H₅, η^5 -C₅(CH₃)₅, η^5 -C₅H₄R (R = OCH₃, COCH₃))⁴⁴³ have been studied.⁴⁴⁴ This latter studies employed double-resonance techniques using naturally occurring isotopes; it was found that ferrocene, cobaltocene, and ruthenocene reacted with 10-40% of the Langevin collision rate, while for manganocene the efficiency was significantly lower (0.6%). Different spin multiplicities or Mn-C bond lengths in the cation and the neutral could be responsible for this finding.443a,b Methyl substitution significantly enhances the efficiency of the manganocene reactions as does increased exothermicity in mixed CT systems.443a The rate constants in the gas phase showed the same ordering as in solution.443c

Binding energies to CpNi⁺ have been determined for NO by photodissociation⁴⁴⁵ and appearance-potential

measurements,⁴³⁸ and for 30 further neutrals, including alcohols, ethers, aldehydes, amines, phosphines, etc., in an ICR equilibrium study.⁴⁴⁶ A linear correlation to the proton affinities of the neutrals was observed for most of the compounds studied; exceptions arose from π bonding abilities. Further, binding energy generally increased with increasing substitution and was greater for second-row than for first-row compounds (e.g., $(CH_3)_3P > (CH_3)_3N$; $(CH_3)_2S > (CH_3)_2O$).

5. Transition-Metal Carbide Ions

Tantalum carbide cluster ions TaC_x^+ (x = 1-14) produced by laser desorption of a tantalum powder/ carbon mixture have been studied upon their reactivity.²²⁵ With D_2 three different types of products were formed; D abstraction is noted for x = 1 and 3, TaC_{x-2}⁺ by loss of C_2D_2 is formed for x = 2 and 5-7, and $TaC_xD_2^+$ adducts for x = 8-14. Methane formed two products, $TaC_{x+1}H_2^+$ by loss of H_2 and $TaC_{x-1}H_2^+$ by loss of C_2H_2 ; TaC⁺ in addition is converted to Ta⁺. $^{13}CH_4$ gives rise to a completely statistical label distribution, indicative of CH₄ incorporation before ethyne elimination. Loss of H_2 and C_2H_2 is also observed in the reaction with C_2H_4 , and here as well, extensive, but not completely statistical carbon scrambling is noted. Ethane loses mainly $2H_2$ and C_2H_4 , thus the same ionic products are formed as for ethene. CO is produced in the reaction with water. From the rate constants it became obvious that TaC_x^+ with x = 7-9 existed as a mixture of at least two isomeric structures, respectively.

F. $M(CO)_{n}^{+}$ Ions

We will discuss only transition-metal carbonyl ions in this final section about ligated metal ions since here the most data has been reported, and the results can easily be transcribed for other ligands, such as NO or PR₃. Carbonyl ions have been studied quite extensively owing to the fact that they are readily available upon electron impact on volatile organometallic compounds, e.g., Fe(CO)₅ or Co(NO)(CO)₃.⁴⁴⁷ There are copious cases in the literature, where $M(CO)_n^+$ ions react by a simple ligand-substitution reaction (eq 87).^{46a,51,73,274,310,316,325,352,362,370,448-451} The number *m* of

$$M(CO)_{n}^{+} + L \rightarrow M(CO)_{n-m}L^{+} + mCO \qquad (87)$$

displaced CO molecules depends upon the relative binding energy of L to the metal center; strong ligands are able to displace more CO's than the weakly bonding ones.⁴⁵² However, as already discussed in section VII.A, what looks like a simple ligand-substitution reaction may not necessarily be one. CH₃I, CH₃OH, C₂H₅NH₂, or C₂H₅I react with MCO⁺ by loss of CO; yet, the resulting product ions possess "inserted" structures, i.e., CH₃-Fe⁺-X, or consist of multiligand complexes M-(C₂H₄)(HX)⁺.^{273,274,325} Often the available energy in the collision complex [M(CO)_nL⁺]* is not only sufficient to cleave L but also to lose some of its fragments Fⁱ (eq 88).^{46a,73,274,310,316,318,325,352,362,370,449,450} The amount of

$$M(CO)_{n}^{+} + L \rightarrow [M(CO)_{n}L^{+}]^{*} \rightarrow M(CO)_{n-m}F^{1+} + mCO + F^{2} (88)$$

simple ligand substitution increases with the number n of ligands on the reactant ion. For relatively small substrates two or three CO's are already sufficient to suppress fragmentation upon complexation.^{46a,274,316,325,352,362,370} However, when L, and hence its binding energy, increases fragmentation becomes more abundant.³⁷⁰ The fragmentation products observed for MCO⁺ are often the same as for M⁺. This has been explained theoretically by examining the M⁺-CO bonding. It has been proposed that the bonding situation cannot be described by the usual Dewar-Chatt-Duncanson formalism⁴⁵³ but is mainly due to the electrostatic attraction.^{46,95,464-457} Thus, M is in the same electronic configuration and spin state in M⁺ as in MCO⁺ and hence reacts similarly.^{46a}

And yet, in many cases new products have been observed for $M(CO)_n^+$, which were absent for M^+ , so CO can be more than a spectator ligand.^{46a,310,316,325,352,362,370} MCO^+ insertion has been postulated to account for some of the findings; the resulting acyl complexes subsequently decompose to form new products. Coupling of other ligands has been described as well; for instance, the reaction of $Fe(CO)_4^+$ with two molecules of allyl chloride furnishes $FeC_6H_{10}Cl_2^+$, which, according to CID and ligand-exchange experiments, consists to 60% as a hexadiene-dichloro complex in which the two allyl units have been coupled.³¹⁸

The reaction of the acetyl ion CH_3CO^+ with $CpRh_{(CO)_2}$ produces $CpRh(CO)COCH_3^+$ and $CpRh(CO)-CH_3^+$; ¹⁸O labeling of the reagent ion showed that the label was retained completely in the former and exactly to one half in the latter product, revealing the irreversible formation of a $CpRh(CO)_2CH_3^+$ intermediate.^{44a} Methylation of $CpRh(CO)_2$ with $(CH_3)_2F^+$ produces initially the same complex which then loses CO to generate $CpRh(CO)CH_3^+$.^{44a}

IX. Bond Dissociation Energies

Out of the various means to determine bond dissociation energies,^{42e,133,458} we will restrict ourselves to ion/molecule equilibrium reactions in ICR spectrometers and dissociations of adduct complexes in sectorfield mass spectrometers, results of KERD, ion-beam, and photodissociation experiments already being included in the previous chapters. We will also refrain from discussing the numerous examples for bracketing experiments in ICR spectrometers where the occurrence or nonoccurrence of a reaction is relevant; these kind of BDE determinations are beyond the scope of this review, just like most of the high-pressure mass spectrometry (HPMS) experiments with bare metal ions.⁴⁵⁹

Similar to the binding energies for CpNi⁺ mentioned above,⁴⁴⁶ relative binding energies for various substrates L have been determined by measuring the equilibrium constants for eq 89 for M = Li,⁴⁶⁰ Mg,⁴⁶¹ Al,⁴⁶² and Mn.³⁰⁴ Accordingly, the equilibrium in eq 90 was used

$$ML_1^+ + L_2 = ML_2^+ + L_1$$
 (89)

to derive relative $D^{\circ}(M^{+}-2L)$ two-ligand bond dissociation energies for $M = Co,^{463} Ni,^{464} Cu,^{465}$ and FeBr;⁴¹⁵ most of the results have been summarized.^{102b} The

$$M(L_1)_2^+ + 2L_2 \rightleftharpoons M(L_2)_2^+ + 2L_1$$
 (90)

equilibrium constants can be used to derive relative bond dissociation energies if (a) ΔH for the ligand exchange does not exceed 2 kcal mol⁻¹, otherwise the reverse reaction is too slow to be followed, (b) entropy changes are negligible, (c) occasional symmetry corrections are applied, and (d) no further reactions of the M(L)⁺ or M(L)₂⁺ complexes interfere. If at least one of the bond dissociation energies is known absolutely, the relative scales can be tied to this value and converted into absolute scales. In the case of Li^{+ 460} this has been done on the basis of $D^{\circ}(\text{Li}^+-\text{H}_2\text{O})$, and for Mg⁺ $D^{\circ}(\text{Mg}^+-\text{CH}_3\text{OH})$ and $D^{\circ}(\text{Mg}^+-\text{CH}_3\text{COCH}_3)$ have been determined with the help of photodissociation experiments.⁴⁶¹

For all Lewis acids studied, the BDE's increased upon substitution, e.g., $H_2O < CH_3OH < (CH_3)_2O$, or C_2H_4 $< C_3H_6 < C_4H_8$. By comparing $D^{\circ}(M_1^{+}-L)$ versus $D^{\circ}(M_{2}^{+}-L)$ it was observed that linear correlations resulted for similar molecules, e.g., oxygen bases fell on one line and sulfur bases on another. The offsets and the slopes of these lines gave indications about the nature of the bonding interactions. In particular, the relative hardness or softness of the Lewis acids could be evaluated. Softness increases in the row $H^+ < Al^+$ $\ll Mn^+ \le FeBr^+ < Co^+ \le CpNi^+ < Ni^+ < Cu^+$, which has also been discussed in terms of increasing metalligand bond distance. There is a discrepancy for Mg⁺ with regard to its softness, which does not fit in with the remaining correlations, but the ion is certainly softer than the hard acids H⁺ and Al⁺.⁴⁶¹

Synergistic effects have been evaluated for Co⁺, Ni⁺, and Cu⁺ by examining mixed complexes MAB⁺ in relation to MA₂⁺ and MB₂^{+.466} From five combinations of different types of bases studied (σ -, π -, S-, and Nbases), a significant synergistic effect was only noted for σ -base/ π -base combinations, which was explained by the trans influence of the ligands. The filled σ -orbital of the one ligand (σ -donor) overlaps with an empty σ -orbital of the metal, so that a filled d orbital can give maximum electron density to the empty π -orbital of the other ligand (π -acceptor).

Relative metal ion affinities may also be determined by studying competitive ligand loss in MI or CID spectra of mixed adduct complexes MAB⁺, a method developed by Cooks and co-workers for proton-bound dimers.⁴⁶⁷ It allows estimation of relative bond dissociation energies from the intensities of MA⁺ versus MB⁺ if (a) the reverse activation energies for the ligand losses are negligible or equal for both ligands and (b) similar frequency factors (entropy changes) obtain. The method has been applied to compare the binding energies of $(C_2H_5)_2NH$ and $i-C_3H_7NH_2$ to Al⁺,⁴⁶⁸ of several alcohols to Ag⁺,⁴⁶⁸ and of CH₃CN and CH₃NC to Fe⁺.²⁷² As expected, increased substitution results in higher binding energies,⁴⁶⁸ and the isocyanide is more strongly bound than the nitrile.²⁷² Synergistic effects were noted for ML₁L₂⁺ and ML₁L₂L₃⁺ complexes (M = Mn, Fe, Co; L_i = CO, NO, H₂O, CH₃OH).⁴⁶⁹ In the Fe(CO)_n(H₂O)⁺ series, additional CO's weakened the M–CO interaction and addition of CO to Co(H₂O)(NO)⁺ reverses the relative order of the H₂O and NO binding energies. Both effects arise from a competition of π -acceptors, i.e., mutually destabilizing effects of two or more π bases are noted.

Absolute bond dissociation energies can be obtained by determining the threshold for ligand loss in CID complexes. These experiments have been performed in triple-quadrupole instruments where either the absolute energy zero is precisely known⁴⁷⁰ or differences are measured.^{419,471} The first and second water binding energies $D^{\circ}(M^+-H_2O)$ and $D^{\circ}(M(H_2O)^+-H_2O)$ have been determined for the first-row transition-metal ions Sc⁺-Zn^{+ 419,470,471} and several ammonia binding energies $D^{\circ}(M(NH_3)_n^+ - NH_3)$ for M = V-Ni.⁴⁷⁰ Quite surprisingly, several metal ions bind the second solvent molecule more strongly than the first. This could be confirmed in theoretical studies on $M(H_2O)_n^{+454,472-474}$ and $M(NH_3)^{+46b,472b}$ which showed that the bonding is mainly electrostatic for the monohydrates as well as the dihydrates.^{454,473} The larger binding energy of the second water molecule can arise from changes in the mixing of the metal-ion asymptotes as a result of the differences in the metal-water repulsion between one and two $H_2O.^{473}$ Clustering of H_2O and NH_3 to Cu⁺ and Ag⁺ has also been studied by using HPMS,³²¹ and $D^{\circ}(V^{+}-H_{2}O)$ was determined by photodissociation.⁴⁷⁵ Quite similarly, $D^{\circ}(M^+-OH)$ has been determined by CID for M = Sc-Ni and Zn,⁴⁷¹ and this data can be compared to other experimental^{314,417-419} or theoreti-cal^{109h} values.

Protonation of $(CO)_5MnCH_3$ by organic acids BH⁺ gives some interesting estimates for dissociation and elimination processes.⁴⁷⁶ With increasing acidity of BH⁺, the reactions in eqs 91–93 are subsequently observed to happen. Equation 91, observed for weak $(CO)_5MnCH_3 + BH^+$

 $\rightarrow (CO)_5 Mn^+ + CH_4 + B \tag{91}$

$$\rightarrow (CO)_5 Mn(CH_3)H^+ + B \qquad (92)$$

$$\Rightarrow (CO)_4 Mn(CH_3)H^+ + CO + B \quad (93)$$

acids, is due to protonation of the Mn–C bond, which needs little or no activation barrier. Stronger acids are also able to protonate the manganese atom (eq 92), and if there is still sufficient energy, one carbonyl may be lost in addition (eq 93). Loss of CO from (CO)₅Mn-(CH₃)H⁺ may also be induced by CID. From comparison of the gas-phase acidities of BH⁺ it follows that $D^{\circ}[(CO)_{4}Mn(CH_{3})H^{+}-CO] = 7 \pm 2$ kcal mol⁻¹; evidently the activation energy for reductive elimination of CH₄ from (CO)₅Mn(CH₃)H⁺ must exceed this value. The homologous (CO)₅ReCH₃ shows analogous behavior upon protonation.⁴⁷⁶

An isomeric $(CO)_5Mn(CH_4)^+$ ion is formed in a high-pressure CI source from $Mn_2(CO)_{10}$ and CH_4 .⁴⁷⁷ Upon CID methane is lost before any CO elimination is observed; the bond dissociation energy D° - $((CO)_5Mn^+-CH_4) < 7.2$ kcal mol⁻¹ is in accordance with a weakly bound methane complex. In a similar way complexes of $Mn(CO)_5^+$ with H_2 and H_2O could be characterized by CID as dihydrogen⁴⁷⁸ and water complexes.⁴⁷⁷

X. Addendum

In the period following completion of the manuscript several new papers came to our knowledge which are reported below.

Several third-row ions were examined upon their reactivity, in particular toward methane.⁴⁷⁹⁻⁴⁸¹ Os⁺,¹²⁴ Ta^{+} ,^{114,125} W⁺, Ir⁺, and Pt⁺ are able to form MCH₂⁺ ions while Hf⁺, Re⁺, and Au^{+ 11} did not react with CH₄.^{479,480} Upon translational excitation Hf⁺ and Re⁺ are, however, seen to react; with H_2 the thus formed MCH_2^+ ions are reduced to M⁺ again. Sequential reactions with meth-ane to $MC_xH_{2x}^+$ complexes are observed for M = Ta-Pt, with $WC_8H_{16}^+$ being the highest order product.^{479,480} With ethane dehydrogenation to $MC_2H_4^+$ or $MC_2H_2^+$ is observed for Hf⁺, W⁺, Ir⁺, and Au⁺¹¹ while groundstate Re^+ did not react with C_2H_6 , in contrast to translationally excited $Re^{+.480}$ Re^+ does react with cyclopropane, however, and $ReCH_2^+$, $ReC_3H_4^+$, and $\operatorname{ReC}_{3}H_{2}^{+}$ are formed; Hf^{+} in addition produces $\operatorname{HfC}_{2}H_{2}^{+.480}$ Hf^{+} and W^{+} but not Re^{+} yield the metal oxide ions MO⁺ upon reaction with O_2 , H_2O , or CO_2 ; with formaldehyde Hf⁺ not only affords HfO⁺ but also HfH₂⁺, similar to e.g. Sc⁺,⁷⁹ Gd⁺,¹⁰³ or Os⁺.¹²⁴ Re⁺ forms ReO^+ and $ReCH_2^+$ with ethylene oxide, Ir^+ produces IrCO⁺, IrCH₂O⁺, and IrH₂⁺ from methanol, and W⁺ forms $WC_3H_2O^+$ and WCH_2O^+ from acetone. Reactions of metal oxide ions were also studied.480 WO+ is oxidized to WO_2^+ by O_2 or CO_2 and ReO^+ to ReO_2^+ and ReO_3^+ by O₂; methane dehydrogenation is observed for ReO^+ and ReO_2^+ , and, similarly to OsO_2^+ , 124 ReO_2^+ undergoes sequential metathesis with NH_3 to $ReN_2H_2^{+,480}$

Alkanedinitriles have been studied with Fe⁺, and a chemistry completely different from alkanenitriles was encountered.482 Several processes were operative and included insertions into C-CN, other C-C, as well as C-H bonds, and losses of HCN, saturated and unsaturated nitriles, ethene, hydrogen, and even radicals resulted. Fe⁺ was also used to study chain-length effects with unsaturated halides of the general formula CH₃- $(CH_2)_m C = C(CH_2)_n X$ or $CH_3(CH_2)_m CH = CH(CH_2)_n X$ $(m, n = 2-4; X = Cl, Br).^{483}$ For n = 3 exclusively \bar{C}_2H_4 was produced, originating to >93% (alkynes) or 100% (alkenes) from $C_{(1)}$ and $C_{(2)}$. For n = 4, alkynes were mainly dehydrogenated, indicating triple-bond coordination, while alkenes mainly afforded HX loss, indicative of halide coordination. For n = 2 many products were observed, presumably from both coordination modes.

In a combined experimental/theoretical approach Sc^{2+} , Y^{2+} , and Cu^+ binding energies to small alkanes and alkenes were evaluated.⁴⁸⁴ While Sc^{2+} initiated charge-splitting reactions only, $Y^{2+}-L$ ions (L = ligand) could be formed in condensation, dehydrogenation, and ligand-exchange reactions. In a series of ligand-displacement reactions the following order in Y^{2+} binding energies could be obtained: CH_4 , $C_2H_6 < C_2H_2$, C_2H_4 $< C_3H_8 < C_3H_6 < C_4H_{10} < C_4H_6$. Thus, C_n alkanes are bound more strongly than are C_{n-1} alkenes. In contrast, for Cu^+ , $C_3H_8 < C_2H_4 < C_3H_6$ was found. These findings were supported by calculations which show that binding for dications is mainly electrostatic in origin; π^* -back-bonding is reduced and polarization is much more important than for monocations.^{97e,484}

The reaction of Y^{2+} with *n*-butane affords YCH_3^+ as one of the products; since Y^+ with CH_3I yielded YI^+ only, this allowed to study the YCH_3^+ chemistry.⁴⁸⁵ YCH_3^+ did not react with H_2 , small alkanes, or benzene, but activated allylic or benzylic C–H bonds via σ -bond metathesis. CH_4 loss was the main or exclusive reaction with small alkenes and was accompanied by subsequent dehydrogenation for larger alkenes. Ethene exclusively afforded the Y(allyl)⁺ ion by insertion/dehydrogenation, but the reaction of YCD_3^+ , which resulted in 50% YCH_3^+ , indicated also reversible formation of $Y(i-Pr)^+$ via ethene insertion and rapid, reversible β -hydrogen and β -methyl shifts.

Metalloporphyrin ions $M(P)^+$ were synthesized by reaction of bare or ligated metal ions ($M^+ = Cr^+-Ni^+$) with porphine; labeling showed that exclusively N,N'dehydrogenation occurred. Fe(P)⁺ could not be oxidized to Fe(P)O⁺ although several oxidants were attempted.⁴⁸⁶

The reaction of $Cp_2ZrCH_3^+$ with $E(CH_3)_3$ (E = Al, Ga) affords loss of two methane molecules and is believed to yield $Cp_2Zr(\mu-CH_2)_2E^+$ metallacycles.⁴⁸⁷ Both carbon atoms arise from the neutral reagents, as indicated by labeling as well as by the reaction with $Zn(C-H_3)_2$ which produces only one molecule of methane and, presumably, $Cp_2Zr(\mu-CH_2)(\mu-CH_3)Zn^+$.

Completing earlier studies, $^{302,307,358-362}$ the reactions of Sc⁺-Zn⁺ with the four halobenzenes have been studied.⁴⁸⁸ Sc⁺, Ti⁺, and V⁺ reacted with all of them according to eq 65 and with *n* up to 6. Fe⁺ has already been described in section VII.E; Co⁺ and Ni⁺ only formed adduct complexes with fluoro- and chlorobenzene and MC₆H₅⁺ ions with iodobenzene, but eq 65 could still be noted for Co⁺ and X = Br (*n* = 6) and for Ni⁺ and X = Br (*n* = 6) or I (*n* = 5). Cr⁺, Mn⁺, Cu⁺, and Zn⁺ were either completely unreactive or only adduct-complex formation, halide abstraction, or charge transfer could be noted.

As described in section VII.F.2, the primary reactions of Cr^+-Cu^+ with isopropyl isocyanate led to $M(HNCO)^+$ and $M(C_3H_6)^+$ ions with comparable branching ratios.^{372,373} The secondary reactions were metal-ion dependent, though; both products afforded $MC_4H_7NO^+$ ions but while for Cr^+ , Mn^+ , and Zn^+ these correspond to adduct complexes $M(i-C_3H_7NCO)^+$, for Fe⁺-Cu⁺, at least partly, isomeric $M(HNCO)(C_3H_6)^+$ complexes are formed.⁴⁸⁹ This finding, albeit obtained in an FTICR instrument, should make researchers using sector instruments more precautious as they are mass-selecting adduct complexes.

The relative abundances of nitrile adduct-complexes, formed in an ion source by the "FAB method",⁶⁸ compared to the bare metal ions were interpreted as giving the following order of bond energies: $D^{\circ}(Mn^+-NCR)$ $< D^{\circ}(Fe^+-NCR) < D^{\circ}(Co^+-NCR) < D^{\circ}(Ni^+-NCR)$.⁴⁹⁰ Very small losses of CH₃, C₂H₄, and C₂H₅ in CID spectra of these RCN-M⁺ complexes (R = CH₃, C₂H₅) were assigned to a small amount of side-on coordinated metal ions. However, the authors were assuming that a metal-ion insertion precedes the radical losses, neglecting direct C–C cleavages in the course of the collision process.

The bonding strength of ethene in $Ag(C_2H_4)^+$ and $Ag(C_2H_4)_2^+$ has been determined by using HPMS and was found to be much higher than expected on the basis of simple electrostatic attraction.⁴⁹¹ The latter bonding mode was suggested in theoretical studies on $AgC_2H_4^{+,159a,c,e}$ Clustering of He with state-selected transition-metal ions has been studied, too.⁴⁹² While Ti⁺, Mn⁺, and Zn⁺ did not form MHe⁺ adducts, ground-state V⁺, Cr⁺, Co⁺, and Ni⁺ ions did; FeHe⁺ was also observed but was probably due to the reaction of an excited state. The measured binding energies were low, 1–3.5 kcal mol⁻¹, thus only electrostatic bonding obtains.

The interaction of a methane chemical-ionization plasma with $Cr(CO)_6$ and $Mn_2(CO)_{10}$ results in [Cr- $(CO)_6$]C₂H₅⁺, [Mn₂(CO)₁₀]C₂H₅⁺, and [Mn₂- $(CO)_{10}$]C₃H₇⁺ ions. CID of these ions reveals alkene loss (C₂H₄ or C₃H₆, respectively) with rather low thresholds, and proton-bridged structures, e.g. (CO)₅CrCO--H⁺--(C₂H₄), have been proposed.⁴⁹³

The thresholds for endothermic hydride abstraction of Fe⁺ with propane,¹³⁰ cyclopropane, *n*-butane, cyclopentane, and acetaldehyde were determined to derive $D^{\circ}(\text{Fe-H})$.⁴⁹⁴ Similarly, $D^{\circ}(\text{Ti-H})$ was obtained from the reaction of Ti⁺ with mono-, di-, and trimethylamine.⁴⁹⁵ For all three systems many products were observed in addition to TiH, with loss of H₂ dominating, respectively.

The barrier for loss of CO from $V(CO_2)^+$ has been estimated by RRK modeling of the wave length dependent VO^+/V^+ branching ratio upon photodissociation.⁴⁹⁶ Last, but not least, the reader is referred to an impressively comprehensive review by Tsipis about calculations on transition-metal compounds which covers many of the systems discussed here.⁴⁹⁷

XI. Acknowledgments

Studies at the TU Berlin have been supported by the Deutsche Forschungsgemeinschaft, the Volkswagen-Stiftung, the Fonds der Chemischen Industrie (FCI), the Gesellschaft von Freunden der Technischen Universität Berlin, and the Graduiertenkolleg Chemie (Berlin). K.E. acknowledges a fellowship by the FCI and expresses personal gratitude to W. Lyons for the excellent work that provided the proper ambience. We are also grateful to our co-workers, whose names are listed in the references, and to all colleagues who provided reprints and preprints.

References

 Selected reviews: (a) Muetterties, E. L. Chem. Soc. Rev. 1982, 11, 283. (b) Jones, W. D.; Feher, F. J. Acc. Chem. Res. 1989, 22, 91. (c) Bergman, R. G. Science 1984, 223, 902. (d) Green, M. L. H.; O'Hare, D. Pure Appl. Chem. 1985, 57, 1897. (e) Baudry, D.; Ephritikhine, M.; Felkin, H.; Fillebeen-Khan, T.; Gault, Y.; Holmes-Smith, R.; Yingrui, L.; Zakrzewski, J. In Organic Synthesis: An Interdisciplinary Challenge; Streith, J., Prinzbach, H., Schill, G., Eds.; Blackwell Scientific Publications: Oxford, 1985; p 25. (f) Shilov, A. E.; Shteinman, A. A. Coc^{-d}. Chem. Rev. 1977, 24, 97. (g) Crabtree, R. H. Chem. Rev. 1985, 85, 245. (h) Vol'pin, M.; Akhrem, I.; Orlinkov, A. New J. Chem. 1989, 13, 771. (i) Barton, D. H. R.; Halley, F.; Ozbalik, N.; Young, E.; Balavoine, G.; Gref, A.; Boivin, J. New J. Chem. 1989, 13, 177. (j) Webster, D. E. Adv. Organomet. Chem. 1977, 15, 147. (k) Janowicz, A. H.; Periana, R. A.; Buchanan, J. M.; Kovac, C. A.; Stryker, J. M.; Wax, M. J.; Bergman, R. G. Pure Appl. Chem. 1984, 56, 13. Rothwell, I. P. Polyhedron 1985, 4, 177. (m) Deem, M. L. Coord. Chem. Rev. 1986, 74, 101. (n) Shilov, A. E. Pure Appl. Chem. 1978, 50, 725. (o) Maguire, J. A.; Boese, W. T.; Gold-man, M. E.; Goldman, A. S. Coord. Chem. Rev. 1990, 97, 179. (p) Hill, C. L. Activation and Functionalization of Alkanes; Wiley-Interscience: New York, 1989. (q) Chipperfield, J. R.; Webster, D. E. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Ed.; Wiley-Interscience: New York, 1987; Vol. 4, p 1073. (r) Ephritikhine, M. New J. Chem. 1986, 10, 9. (s) Dahlenburg, L. Nachr. Chem., Tech. Lab. 1988, 36, 899. (t) Davies, J. A.; Watson, P. L.; Liebman, J. F.; Greenberg, A. Selective Hydrocarbon Activation; VCH Verlagsgesellschaft: Weinheim, 1990. (u) Aktogu, N.; Baudry, D.; Cox, D.; Ephritikhine, M.; Felkin, H.; Holmes-Smith, R.; Zakrzewski, J. Bull. Soc. Chim. 1985, 381. (v) Maugh, T. H., II Science 1983, 220, 1261. (w) Shilov, A. E.; Shul'pin, G. B. Usp. Khim. 1990, 59, 1468; Russ. Chem. Rev. 1990, 59, 853. For theoretical studies, see: (a) Saillard, J.-Y.; Hoffmann, R. L. Am. Chem. Soc. 1984. 106 2006; (b) Plancherg M. B.

- 1990, 59, 1468; Russ. Chem. Rev. 1990, 59, 853.
 (2) For theoretical studies, see: (a) Saillard, J.-Y.; Hoffmann, R. J. Am. Chem. Soc. 1984, 106, 2006. (b) Blomberg, M. R. A.; Brandemark, U.; Siegbahn, P. E. M. J. Am. Chem. Soc. 1983, 105, 5557. (c) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 6928. (e) Low, J. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 1561. (h) Ziegler, T.; Tschinke, V.; Fan, L.; Becke, A. D. J. Am. Chem. Soc. 1989, 111, 9177. (i) Low, J. J.; Goddard, W. A., III. Organometallics 1986, 5, 609. (j) Rabaâ, H.; Saillard, J.-Y.; Hoffmann, R. J. Am. Chem. Soc. 1986, 108, 4327. (k) Balazs, A. C.; Johnson, K. H.; Whitesides, G. M. Inorg. Chem. 1982, 21, 2162. (l) Blomberg, M. R. A.; Siegbahn, P. E. M.; Nagashima, U.; Wennerberg, J. J. Am. Chem. Soc. 1991, 113, 424. 424
- 424.
 (a) Silvestre, J.; Hoffmann, R. Helv. Chim. Acta 1985, 68, 1461.
 (b) Silvestre, J.; Calhorda, M. J.; Hoffmann, R.; Stoutland, P.; Bergman, R. G. Organometallics 1986, 5, 1841.
 (c) Rappé, A. K. Organometallics 1990, 9, 466.
 (d) Steigerwald, M. L.; Goddard, W. A., III. J. Am. Chem. Soc. 1984, 106, 308.
 (e) Eisch, J. J.; Sexsmith, S. R. Res. Chem. Internal 1990, 12, 140. (3) termed. 1990, 13, 149.
- termed. 1990, 13, 149. (a) Garin, F.; Maire, G. Acc. Chem. Res. 1989, 22, 100. (b) Kemball, C. Chem. Soc. Rev. 1984, 13, 375. (c) Somorjai, G. A. Chem. Soc. Rev. 1984, 13, 321. (d) Crabtree, R. H.; Ham-ilton, D. G. Adv. Organomet. Chem. 1988, 28, 299. (e) Koga, N.; Morokuma, K. J. Phys. Chem. 1990, 94, 5454. (f) Perutz, R. N.; Belt, S. T.; McCamley, A.; Whittlesley, M. K. Pure Appl. Chem. 1990, 62, 1539. (a) Crabtree, R. H.; Holt, E. M.; Lavin, M.; Morehouse, S. M. Inorg. Chem. 1985, 24, 1986. (b) Ryabov, A. D. Chem. Rev. 1990, 90, 403. (4)
- 1990, *90*, 403.
- Reviews: (a) Klabunde, K. J. In Reactive Intermediates;
 Abramovitch, R. A., Ed.; Plenum Press: New York, 1980;
 Vol. 1, p 37. (b) Whetten, R. L.; Schriver, K. E. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 193. See also: (c) Ritter, D.; Weisshaar, J. C. J. Am. Chem. Soc. 1990, 112, 6425 and references cited therein. (d) Mitchell, S. A.; Hackett, P. A. J. Chem. Phys. 1990, 93, 7822.
 (a) Scuirse, B. P. Chem. Rev. 1987, 87, 623. See also: (b)
- (a) Squires, R. R. Chem. Rev. 1987, 87, 623. See also: (b) Gregor, I. K.; Guilhaus, M. Mass Spectrom. Rev. 1984, 3, 39. Lane, K. R.; Squires, R. R. Polyhedron 1988, 7, 1609.
 (a) Pan, Y. H.; Ridge, D. P. J. Am. Chem. Soc. 1989, 111, 1150.
 (b) Chen, H. L.; Pan, Y. H.; Groh, S.; Hagan, T. E.; Ridge, D. P. J. Am. Chem. Soc. 1991, 113, 2766.
 Sallans, L.; Lane, K. R.; Freiser, B. S. J. Am. Chem. Soc.
- (10)1989, 111, 865
- Chowdhury, A. K.; Wilkins, C. L. J. Am. Chem. Soc. 1987, (11)109, 5336.
- Wang, D.; Squires, R. R. J. Am. Chem. Soc. 1987, 109, 7557. (13) McDonald, R. N.; Reed, D. J.; Chowdhury, A. K. Organo-
- metallics 1989, 8, 1122
- (14) McDonald, R. N.; Schell, P. L. Organometallics 1988, 7, 1820.
 (15) McDonald, R. N.; Schell, P. L. Organometallics 1988, 7, 1806.
 (16) (a) Jones, M. T.; McDonald, R. N. Organometallics 1988, 7, (a) Solies, M. T.; McDonald, R. N.; Schell, P. L.; Ali,
 M. H. J. Am. Chem. Soc. 1989, 111, 5983. (c) McDonald, R.
 N.; Jones, M. T.; Chowdhury, A. K. J. Am. Chem. Soc. 1991, 113, 476. (d) McDonald, R. N.; Bianchina, E. J. Organo-metallics 1991, 10, 1274.
 Correct LY, Construction of Science and Science
- (17)
- (18)
- (19)
- (20)
- metallics 1991, 10, 1274. Gregor, I. K. Org. Mass Spectrom. 1987, 22, 644. Gregor, I. K. Org. Mass Spectrom. 1989, 24, 529. Gregor, I. K. J. Organomet. Chem. 1987, 329, 201. (a) Gregor, I. K. Inorg. Chim. Acta 1987, 132, 3. (b) Gregor, I. K. Inorg. Chim. Acta 1990, 176, 19. Wysocki, V. H.; Kenttämaa, H. I.; Cooks, R. G. J. Phys. Chem. 1988, 92, 6465. Squires, R. R.; Lane, K. R. In Gas Phase Inorganic Chem-istry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 43. (21) Wysocki, (22)

- (23) Stevens Miller, A. E.; Kawamura, A. R.; Miller, T. M. J. Am. Chem. Soc. 1990, 112, 457.
- (a) Shin, S. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1990, 112, 2057. (b) Shin, S. K.; Beauchamp, J. L. J. Am. Chem. (24)
- 112, 2031. (0) Shin, S. K., Beatchamp, J. L. J. Am. Chem. Soc. 1990, 112, 2066.
 (25) Richardson, D. E.; Christ, C. S.; Sharpe, P.; Eyler, J. R. Organometallics 1987, 6, 1819.
 (26) Sharpe, P.; Eyler, J. R.; Richardson, D. E. Inorg. Chem. 1990, 29, 2779.

- (26) Sharpe, P.; Eyler, J. R.; Richardson, D. E. Inorg. Chem. 1990, 29, 2779.
 (27) Damrauer, R.; Krempp, M. Organometallics 1990, 9, 1353.
 (28) (a) Buckner, S. W.; VanOrden, S. L. Organometallics 1990, 9, 1093. (b) VanOrden, S. L.; Pope, R. M.; Buckner, S. W. Organometallics 1991, 10, 1089.
 (29) Reviews: (a) Morse, M. D. Chem. Rev. 1986, 86, 1049. (b) Kaldor, A.; Cox, D. M. Pure Appl. Chem. 1990, 62, 79. (c) Kaldor, A.; Cox, D. M. Pure Appl. Chem. 1990, 62, 79. (c) Kaldor, A.; Cox, D. M. J. Chem. Soc. Faraday Trans. 1990, 86, 2459. (d) Kaldor, A.; Cox, D. M.; Zakin, M. R. Adv. Chem. Phys. 1988, 70, 211.
 (30) For example: (a) St. Pierre, R. J.; El-Sayed, M. A. J. Phys. Chem. 1987, 91, 763. (b) St. Pierre, R. J.; Chronister, E. L.; Song, L.; El-Sayed, M. A. J. Phys. Chem. 1987, 91, 763. (d) Zakin, M. R.; Cox, D. M.; Kaldor, A. J. Phys. Chem. 1987, 91, 5228. (d) Zakin, M. R.; Cox, D. M.; Kaldor, A. J. Phys. Chem. 1987, 91, 5228. (d) Zakin, M. R.; Brickman, R. O.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1988, 88, 3555. (f) Weiller, B. H.; Bechthold, P. S.; Parks, E. K.; Pobo, L. G.; Riley, S. J. Chem. Phys. 1988, 147, 479. (i) Nonose, S.; Sone, Y.; Onodera, K.; Sudo, S.; Kaya, K. Chem. Phys. Lett. 1989, 158, 152. (j) Nonose, S.; Sone, Y.; Onodera, K.; Kaya, K. Chem. Phys. Lett. 1989, 164, 427. (k) Hamrick, Y.; Taylor, S.; Lemire, G. W.; Fu, Z.-W.; Shui, J.-C.; Morse, M. D. J. Chem. Phys. Lett. 1989, 93, 6494. (m) Song, L.; El-Sayed, M. A. J. Phys. Chem. 1990, 94, 5650. (n) Song, L.; El-Sayed, M. A. J. Phys. Chem. 1990, 94, 5650. (n) Song, L.; El-Sayed, M. K. Chem. Phys. Lett. 1989, 164, 427. (k) Hamrick, Y.; Taylor, S.; Lemire, G. W.; Fu, Z.-W.; Shui, J.-C.; Morse, M. D. J. Chem. Phys. 1988, 88, 4095. (l) Hamrick, Y. M.; Morse, M. D. J. Phys. Chem. 1990, 94, 5650. (n) Song, L.; El-Sayed, M. A. J. Phys. Chem. 1990, 94, 5650. (n) Song, L.; El-Sayed, M. A. J. Phys. Chem. 1990, 94, 7907. (o) Trevor, D. J.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1990, 112, 3742. (p) Trevor, D. J.; Whetten, R. L.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1995, 107, 518. (g) Whetten, R. L.; Cox, D. M.; Kaldor, A. J. Am. Chem. Soc. 1995, 107, 518. (g) Whetten, R. L.; Cox, D. M.; Frevor, D. J.; Kaldor, A. J. Phys. Chem. 1985, 89, 566. (f) Parks, E. K.; Weiller, B. H.; Bechthold, P. S.; Hoffman, W. F.; Nieman, G. C.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1988, 88, 6220. (u) Whetten, R. L.; Zakin, M. R.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1988, 88, 6260. (u) Whetten, R. L.; Zakin, M. R.; Cox, D. M.; Trevor, D. J.; Kaldor, A. J. Chem. Phys. 1986, 85, 1697. (v) Morse, M. D.; Geusic, M. E.; Heath, J. R.; Smalley, R. E. J. Chem. Phys. 1985, 83, 2293. (w) Richtsmeier, S. C.; Parks, E. K.; Liu, K.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1985, 82, 3659. (x) Geusic, M. E.; Morse, M. D.; Smalley, R. E. J. Chem. Phys. 1985, 82, 2650. (y) Song, L.; El-Sayed, M. A. Chem. Phys. 1985, 82, 2590. (y) Song, L.; El-Sayed, M. A. Chem. Phys. Lett. 1988, 152, 281. (z) Liu, K.; Parks, E. K.; Richtsmeier, S. C.; Pobo, L. G.; Riley, S. J. J. Chem. Phys. 1985, 83, 2882. (aa) Liu, K.; Parks, E. K.; Richtsmeier, S. C.; Pobo, L. G.; Riley, S. J. Chem. Phys. 1988, 58, 1201. (ac) Cox, D. M.; Kaldor, A. J. Chem. Phys. 1988, 58, 1201. (ac) Cox, D. M.; Kaldor, A. J. Chem. NF 1980, 169, 101. (af) Parks, E. K.; Richtsmeier, S. C.; Pobo, L. G.; Riley, S. J. J. Chem. NF 1990, 169, 101. (af) Parks, E. K.; Niemann, G. C.; Pobo, L. G.; Riley, S. J. J. Chem. NF 1989, 90, 1526. (ah) Parks, E. K.; Niemann, G. C.; Pobo, L. G.; Riley, S. J. J. Chem. NPhys. 1988, 90, 1526. (ah) Parks, E. K.; Niemann, G. C.; Pobo, L. Chem. 1989, 93, 2485
- Chem. 1989, 93, 2485.
 (31) Review: Buckner, S. W.; Freiser, B. S. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 279.
 (32) (a) Loh, S. K.; Lian, L.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 3167. (b) Loh, S. K.; Lian, L.; Hales, D. A.; Armentrout, P. B. J. Chem. Phys. 1988, 89, 3378. (c) Armentrout, P. B. J. Chem. Phys. 1988, 89, 3378. (c) Armentrout, P. B. J. Chem. Phys. 1988, 89, 3378. (c) Armentrout, P. B.; Loh, S. K.; Ervin, K. M. J. Am. Chem. Soc. 1984, 106, 1161. (d) Loh, S. K.; Lian, L.; Hales, D. A.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 4009. (e) Ervin, K. M.; Loh, S. K.; Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1983, 87, 3539. (f) Loh, S. K.; Hales, D. A.; Armentrout, P. B. J. Chem. Phys. 1989, 91, 6148. (h) Hales, D. A.; Armentrout, P. B. J. Chem. Phys. 1989, 91, 6148. (h) Hales, D. A.; Armentrout, P. B. J. Cluster Sci. 1990, 1, 127. (i)

Armentrout, P. B. In Laser Applications in Chemistry and Biophysics; El-Sayed, M. A., Ed.; Proc. SPIE Vol. 620, 1986; p. 38.

- Armentrout, P. B. In Laser Applications in Chemistry and Biophysics; El-Sayed, M. A., Ed.; Proc. SPIE Vol. 620, 1986; p 38.
 (a) Magnera, T. F.; David, D. E.; Michl, J. J. Am. Chem. Soc. 1987, 109, 936. (b) Jarrold, M. F.; Illies, A. J.; Bowers, M. T. J. Am. Chem. Soc. 1985, 107, 7339. (c) Freas, R. B.; Campana, J. E. J. Am. Chem. Soc. 1985, 107, 6202. (d) Zakin, M. R.; Cox, D. M.; Brickman, R. O.; Kaldor, A. J. Phys. Chem. 1989, 93, 6823. (e) Alford, J. M.; Weiss, F. D.; Laaksonen, R. T.; Smalley, R. E. J. Phys. Chem. 1986, 90, 4480. (f) Larsen, B. S.; Freas, R. B.; Ridge, D. P. J. Phys. Chem. 1984, 88, 6014. (g) Buckner, S. W.; Gord, J. R.; Freiser, B. S. J. Chem. Phys. 1988, 88, 3678. (h) Irion, M. P.; Selinger, A. Chem. Phys. Lett. 1989, 154, 454. (i) Zakin, M. R.; Brickman, R. O.; Cox, D. M.; Kaldor, A. J. Chem. Phys. 1988, 88, 59343. (k) Elkind, J. L.; Weiss, F. D.; Jafford, J. M.; Laaksonen, R. T.; Smalley, R. E. J. Chem. Phys. 1988, 88, 5215. (l) Fayet, P.; McGlinchey, M. J.; Wöste, L. H. J. Am. Chem. Soc. 1987, 109, 1733. (m) Irion, M. P.; Selinger, A. Ber. Bunsenges. Phys. Chem. 1989, 93, 1408. (n) Brechigmac, C.; Brechigmac, P.; Fayet, P.; Saunders, W. A.; Wöste, L. H. J. Chem. Phys. 1988, 89, 2419. (o) Brucut, P. J.; Petiette, C. L.; Yang, S.; Zheng, L.-S.; Craycraft, M. J.; Smalley, R. E. J. Chem. Phys. 1986, 85, 4747. (p) Hanley, L.; Anderson, S. L. Chem. Phys. 1986, 85, 4747. (p) Hanley, L.; Anderson, S. L. Chem. Phys. Lett. 1985, 122, 410. (q) Huang, Y.; Freiser, B. S. Inorg. Chem. 1990, 29, 102. (r) Irion, M. P.; Selinger, A.; Wendel, R. Int. J. Mass Spectrom. Ion Processes 1990, 96, 27. (s) Jarrold, M. F.; Bower, J. E. J. Am. Chem. Soc. 1988, 110, 70. (t) Smalley, R. E. Anal. Instr. 1988, 17, 1. (u) Fayet, P.; Wöste, L. H. Surf, Sci. 1985, 165, 134. (v) Ridge, D. P. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry Vol. 31; Hartmann, H., Wanczek, K.-P., Eds.; Springer-Verlag: Berlin, 1982, p 140. (w) Irion, M. P.; Schnabel, P.; Selinger, N. Gen, Soc. 1987, (33)
- 113, 3274. (i) Lech, L. M., Ph.D. Thesis, Purdue University, 1988.
 (a) Meckstroth, W. K.; Ridge, D. P. Int. J. Mass Spectrom. Ion Processes 1984, 61, 149. (b) Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1984, 106, 825. (c) Pan, Y. H.; Ridge, D. P. J. Phys. Chem. 1989, 93, 3375. (d) Wronka, J.; Forbes, R. A.; Laukien, F. H.; Ridge, D. P. J. Phys. Chem. 1987, 91, 6450. (e) Meckstroth, W. K.; Ridge, D. P. J. Phys. Chem. 1985, 89, 612. (f) Meckstroth, W. K.; Freas, R. B.; Reents, W. D., Jr.; Ridge, D. P. Inorg. Chem. 1985, 24, 3139. (g) Wronka, J.; Ridge, D. P. Inorg. Chem. 1985, 24, 3139. (g) Wronka, J.; Ridge, D. P. Inorg. Chem. 1985, 24, 3139. (g) Wronka, J.; Ridge, D. P. Int. J. Mass Spectrom. Ion Phys. 1982, 43, 23. (h) Ridge, D. P.; Meckstroth, W. K. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 93. (i) Ridge, D. P. In Structure/Reactivity and Thermochemistry of Ions; Ausloos, P., Lias, S. G., Eds.; D. Reidel: Dordrecht, 1987; p 165.
 (a) Gord, J. R.; Freiser, B. S. J. Am. Chem. Soc. 1989, 111, 3754. (b) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1988, 110, 974. (b) Jacobson, D. B. J. Am. Chem. Soc. 1987, 109, 6851. (c) Jacobson, D. B. J. Am. Chem. Soc. 1987, 109, 6851. (c) Jacobson, D. B. J. Am. Chem. Soc. 1987, 109, 6851. (c) Jacobson, D. B. J. Am. Chem. Soc. 1987, 109, 7654. (b) Anderson Fredeen, D. J.; Russell, D. H. J. Am. Chem. Soc. 1987, 109, 7654. (b) Anderson Fredeen, D. J.; Russell, D. H. J. Am. Chem. Soc. 1987, 109, 7654. (c) Harchourg, R. E., Jr.; Russell, D. H. J. Am. Chem. Soc. 1985, 109, 7654. (c) Anderson Fredeen, D. J.; Russell, D. H. J. Am. Chem. Soc. 1985, 107, 3762. (e) Tecklenburg, R. E., Jr.; Bricker, D. L.; Russell, D. H. J. Am. Chem. Soc. 1985, 107, 3762. (e) Tecklenburg, R. E., Jr.; Bricker, D. L.; Russell, D. H. Anal. Chem. 1989, 61, 53. (g) Russell, D. H.; Anderson Fredeen, D. J.; Tecklenburg, R. E., Jr. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 115. (h) Sellers-Ha (35)

- (38)

- D. H. J. Am. Chem. Soc. 1990, 112, 5953.
 (39) (a) Freas, R. B.; Campana, J. E. J. Am. Chem. Soc. 1986, 108, 4659. (b) Freas, R. B.; Dunlap, B. I.; Waite, B. A.; Campana, J. E. J. Chem. Phys. 1987, 86, 1276.
 (40) (a) Mullen, S. L.; Marshall, A. G. J. Am. Chem. Soc. 1988, 110, 1766. (b) Kappes, M. M.; Staley, R. H. J. Phys. Chem. 1982, 86, 1332. (c) Forbes, R. A.; Laukien, F. H.; Wronka, J. Laukien, S. L.; Marshall, S. Carpana, S. C. 1988, 22 (d) Lange Int. J. Mass Spectrom. Ion Processes 1988, 83, 23. (d) Jones, R. W.; Staley, R. H. Int. J. Mass Spectrom. Ion Phys. 1981, 39, 35. (e) Oka, T.; Toya, K.; Kasatani, K.; Kawasaki, M.; Sato, H. Chem. Lett. 1988, 1865. (f) Parisod, G.; Comisarow,
- Sato, H. Chem. Lett. 1938, 1805. (1) Parison, G.; Comisarow, M. B. Adv. Mass Spectrom. 1981, 8, 212.
 (41) Allison, J. Progr. Inorg. Chem. 1986, 34, 627.
 (42) (a) Freiser, B. S. Chemtracts Anal. Phys. Chem. 1989, 1, 65.
 (b) Buckner, S. W.; Freiser, B. S. Polyhedron 1988, 7, 1583.
 (c) Freiser, B. S. Talanta 1985, 32, 697. (d) Freiser, B. S. Anal. Chim. Acta 1985, 178, 137. (e) Freiser, B. S. In Bond-ing Energetics in Organometallic Compounds; Marks, T. J., Ed. 4CS Sumposium Series 428: American Chemical Society.
- Anal. Chim. Acta 1985, 178, 137. (e) Freiser, B. S. In Bonding Energetics in Organometallic Compounds; Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington, DC, 1990; p 55. (f) Weller, R. R.; MacMahon, T. J.; Freiser, B. S. In Lasers in Mass Spectrometry; Lubman, D. M., Ed.; Oxford: New York, 1990; p 249. (g) Burnier, R. C.; Byrd, G. D.; Carlin, T. J.; Wiese, M. B.; Cody, R. B.; Freiser, B. S. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry Vol. 31; Hartmann, H., Wanczek, K.-P., Eds.; Springer-Verlag: Berlin, 1982; p 98.
 (43) (a) Armentrout, P. B.; Georgiadis, R. Polyhedron 1988, 7, 1573. (b) Armentrout, P. B.; Beauchamp, J. L. Acc. Chem. Res. 1989, 22, 315. (c) Armentrout, P. B. In Structure/Reactivity and Thermochemistry of Ions; Ausloos, P., Lias, S. G., Eds.; D. Reidel: Dordrecht, 1987; p 97. (d) Armentrout, P. B. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1999; p 1. (e) Armentrout, P. B. In Selective Hydrocarbon Activation; Davies, J. A., Watson, P. L., Greenberg, A., Liebman, J. F., Eds.; VCH Verlagsgesellschaft: Weinheim, 1990; p 467. (f) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (g) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, p 467. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 9, 115. (h) Armentrout, P. B. Int. Rev. Phys. Chem. 1990, 14, 313.
 (44) (a) Beauchamp, J. L.; Stevens, A. E.; Corderman, R. R. Pure Chem. 1990, 41, 313.

- Science 1991, 251, 175. (i) Armentrout, P. B. Ann. Rev. Phys. Chem. 1990, 41, 313.
 (44) (a) Beauchamp, J. L.; Stevens, A. E.; Corderman, R. R. Pure Appl. Chem. 1979, 51, 967. (b) Beauchamp, J. L. In High Energy Processes in Organometallic Chemistry; Suslick, R. E., Ed.; ACS Symposium Series 333; American Chemical Society: Washington, DC, 1987; p 11.
 (45) van Koppen, P. A. M.; Bowers, M. T.; Beauchamp, J. L.; Dearden, D. V. In Bonding Energetics in Organometallic Compounds; Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington, DC, 1990; p 34.
 (46) (a) Allison, J.; Mavridis, A.; Harrison, J. F. Polyhedron 1988, 7, 1559. (b) Mavridis, A.; Harrison, J. F. Polyhedron 1988, 7, 1559. (b) Mavridis, A.; Kunze, K.; Harrison, J. F.; Allison, J. In Bonding Energetics in Organometallic Compounds; Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington, DC, 1990; p 263.
 (47) (a) Czekay, G.; Drewello, T.; Eller, K.; Lebrilla, C. B.; Prüsse, T.; Schulze, C.; Steinrück, N.; Sülze, D.; Weiske, T.; Schwarz, H. In Organometallics in Organic Synthesis 2; Werner, H., Erker, G., Eds.; Springer-Verlag: Heidelberg, 1989; p 203. (b) Schwarz, H. Acc. Chem. Res. 1989, 22, 282. (c) Eller, K.; Schwarz, H. Chimia 1989, 43, 371. (d) Eller, K.; Karrass, S.; Schwarz, H. Ber. Bunsenges. Phys. Chem. 1990, 94, 1201.
 (48) MacMillan, D. K.; Gross, M. L. In Gas Phase Inorganic Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 369.
 (49) Reviews: (a) Lehman, T. A.; Bursey, M. M. Ion Cyclotron Resonance Spectrometry: Wilay Interscience. New York

- Chemistry; Russell, D. H., Ed.; Plenum Press: New York, 1989; p 369.
 (49) Reviews: (a) Lehman, T. A.; Bursey, M. M. Ion Cyclotron Resonance Spectrometry; Wiley-Interscience: New York, 1976. (b) Gray, G. A. Adv. Chem. Phys. 1971, 19, 141. (c) Beauchamp, J. L. Ann. Rev. Phys. Chem. 1971, 22, 527. (d) Kemper, P. R.; Bowers, M. T. In Techniques for the Study of Ion Molecule Reactions; Farrar, J. M., Saunders, W. H., Jr., Eds.; Wiley-Interscience: New York, 1988; p 1.
 (50) Reviews: (a) Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1989, 95, 1. (b) Wanczek, K. P. Int. J. Mass Spectrom. Ion Processes 1984, 60, 11. (c) Wilkins, C. L.; Gross, M. L. Anal. Chem. 1981, 53, 1661A. (d) Wilkins, C. L.; Gross, M. L. Anal. Chem. 1981, 53, 1661A. (d) Wilkins, C. L.; Ghaderi, S.; Wilkins, C. L.; Gross, M. B. Adv. Mass Spectrom. 1985, 10, 417. (e) Ledford, E. B., Jr.; Ghaderi, S.; Wilkins, C. L.; Gross, M. B. Adv. Mass Spectrom. 1981, 8, 1707. (f) Comisarow, M. B. Adv. Mass Spectrom. 1985, 17, 410. Comisarow, M. B. Adv. Mass Spectrom. 1978, 7, 1042. (h) Comisarow, M. B. Anal. Chim. Acta 1985, 173, 1. (i) Wilkins, C. L.; Chowdhury, A. K.; Nuwaysir, L. M.; Coates, M. L. Mass Spectrom. Rev. 1989, 8, 67. (j) Nibbering, N. M. M. Nachr. Chem., Tech. Lab. 1984, 32, 1044. (l) Marshall, A. G. Acc. Chem. Res. 1985, 18, 316. (m) Baykut, G.; Eyler, J. R. Trends Anal. Chem. 1986, 5, 44. (n) Marshall, A. G. In Mass Spectrometry in the Health and

Life Sciences; Burlingame, A. L., Castagnoli, N., Jr., Eds.; Elsevier: Amsterdam, 1985; p 265. (o) Gross, M. L.; Rempel, D. L. Science 1984, 226, 261. (p) Comisarow, M. B. In Fourier, Hadamard, and Hilbert Transforms in Chemistry; Marshall, A. G., Ed.; Plenum Press: New York, 1982; p 125. (q) Comisarow, M. B. In Transform Techniques in Chemis-try; Griffiths, P. R., Ed.; Plenum Press: New York, 1978; p 257. (r) Buchanan, M. V. Fourier Transform Mass Spec-trometry; ACS Symposium Series 359; American Chemical Society: Washington, DC, 1987. (s) Freiser, B. S. In Tech-niques for the Study of Ion-Molecule Reactions: Farter. J. Society: Washington, DC, 1987. (s) Freiser, B. S. In Techniques for the Study of Ion-Molecule Reactions; Farrar, J. M., Saunders, W. H., Jr., Eds.; Wiley-Interscience: New York, 1988; p 61. (t) Nibbering, N. M. M. Comments At. Mol. Phys. 1986, 18, 223. (u) Marshall, A. G.; Verdun, F. R. Fourier Transform in NMR, Optical, and Mass Spectrometry; Elsevier: Amsterdam, 1990; Chapter 7. (v) Johlman, C. L.; White, R. L.; Wilkins, C. L. Mass Spectrom. Rev. 1983, 2 389. (w) Lande D. A. Jr.; Johlman, C. L.; Brown R. S.; 2, 389. (w) Laude, D. A., Jr.; Johlman, C. L.; Brown, R. S.; Weil, D. A.; Wilkins, C. L. Mass Spectrom. Rev. 1986, 5, 107. Weil, D. A.; Wilkins, C. L. Mass Spectrom. Rev. 1986, 5, 107.
(x) Russell, D. H. Mass Spectrom. Rev. 1986, 5, 167. (y)
McCrery, D. A.; Sack, T. M.; Gross, M. L. Spectrosc. Int. J. 1984, 3, 57. (z) Chiarelli, M. P.; Gross, M. L. In Analytical Applications of Spectroscopy; Creaser, C. S., Davies, A. M. C., Eds.; Royal Society of Chemistry: London, 1988; p 263.
(aa) Hanson, C. D.; Kerley, E. L.; Russell, D. H. In Treatise on Analytical Chemistry; Winefordner, J. D., Bursey, M. M., Kolthoff, I. M., Eds.; Wiley-Interscience: New York, 1989; Vol. 11, p 117. (ab) Marshall, A. G.; Grosshans, P. B. Anal. Chem. 1991, 63, 215A.
Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1971, 93

- (51) Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1971, 93, 4924
- (52)
- (53)
- Foster, M. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1971, 93, 4924.
 (a) Comisarow, M. B.; Grassi, V.; Parisod, G. Chem. Phys. Lett. 1978, 57, 413. (b) McIver, R. T., Jr.; Bowers, W. D. In Tandem Mass Spectrometry; McLafferty, F. W., Ed.; Wiley-Interscience: New York, 1983; p 287.
 (a) Cody, R. B.; Freiser, B. S. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 199. (b) Cody, R. B.; Burnier, R. C.; Freiser, B. S. Anal. Chem. 1982, 54, 96. (c) Cody, R. B.; Freiser, B. S. Anal. Chem. 1982, 54, 1431. (d) Cody, R. B.; Burnier, R. C.; Cassady, C. J.; Freiser, B. S. Anal. Chem. 1982, 54, 2225.
 (e) Burnier, R. C.; Cody, R. B.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 7436. (f) Bricker, D. L.; Adams, T. A., Jr.; Russell, D. H. Anal. Chem. 1983, 55, 2417. (g) Cody, R. B. Analusis 1988, 16, no. 6, XXX.
 (a) Hettich, R. L.; Freiser, B. S. In Ref 50r. (b) Dunbar, R. C. In Gas Phase Ion Chemistry; Bowers, M. T., Ed.; Academic Press: New York, 1979; Vol. 2, p 181. (c) Thorne, L. R.; Beauchamp, J. L. In Gas Phase Ion Chemistry; Bowers, M. T., Ed.; Academic Press: New York, 1984; Vol. 3, p 41. (d) Dunbar, R. C. In Gas Phase Ion Chemistry; Bowers, M. T., Ed.; Academic Press: New York, 1984; Vol. 3, p 129. (e) Dunbar, R. C. Anal. Instr. 1988, 17, 113. (f) Dunbar, R. C. In Molecular Ions: Spectroscopy, Structure and Chemistry; Miller, T. A.; Bondybey, V. E., Eds.; North-Holland Publishing Company: Amsterdam, 1983; p 231. (g) Dunbar, R. C. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry, V. 31: Hartmann, H., Wanczek, K.-P. (54). In Ion Cyclotron Resonance Spectrometry II; Lecture C. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry, Vol. 31; Hartmann, H., Wanczek, K.-P., Eds.; Springer-Verlag: Berlin, 1982; p 1. (h) van Velzen, P. N. T.; van der Hart, W. J. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry, Vol. 31; Hartmann, H., Wanczek, K.-P., Eds.; Springer-Verlag: Ber-lin, 1982; p 27. (i) Thorne, L. R.; Wright, C. A.; Beauchamp, J. L. Dar Curdeton Resonance Spectrometry II, Lecture In, 1982; p 27. (i) Thorne, L. R.; Wright, C. A.; Beauchamp,
 J. L. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry, Vol. 31; Hartmann, H., Wanczek, K.-P.,
 Eds.; Springer-Verlag: Berlin, 1982; p 43.
 Cody, R. B.; Burnier, R. C.; Reents, W. D., Jr.; Carlin, T. J.;
 McCrery, D. A.; Lengel, R. K.; Freiser, B. S. Int. J. Mass Spectrom. Ion Phys. 1980, 33, 37.
 Armentrout, P. B.; Hodges, R. V.; Beauchamp, J. L. J. Chem. Phys. 1977, 66, 4683.
 Armentrout, P. B.; Hodges, R. V.; Beauchamp, J. L. J. Am. Chem. Soc. 1977, 99, 3162.
 Hodges, R. V.; Armentrout, P. B.; Beauchamp, J. L. Int. J. Mass Spectrom. Ion Phys. 1979, 29, 375.
 Armentrout, P. B.; Beauchamp, J. L. Chem. Phys. 1980, 48,
- (55)
- (56)
- (57)
- (58)
- Armentrout, P. B.; Beauchamp, J. L. Chem. Phys. 1980, 48, (59)315.
- (60) Armentrout, P. B.; Beauchamp, J. L. Chem. Phys. 1980, 50,
- Armentrout, P. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1980, (61)102, 1736.
- Ervin, K. M.; Armentrout, P. B. J. Chem. Phys. 1985, 83, 166. Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1986, 108, (63)
- (a) Loh, S. K.; Hales, D. A.; Lian, L.; Armentrout, P. B. J. Chem. Phys. 1989, 90, 5466. (b) Armentrout, P. B. Com-ments At. Mol. Phys. 1988, 22, 133. (64)
- Mestdagh, H.; Morin, N.; Rolando, C. Tetrahedron Lett. (65)1**986,** 3
- (66)Busch, K. L.; Glish, G. L.; McLuckey, S. A. Mass Spectrometry/Mass Spectrometry: Techniques and Applications of

Tandem Mass Spectrometry; VCH Verlagsgesellschaft: Weinheim, 1988.

- Weinheim, 1988.
 McLafferty, F. W. Science 1981, 214, 280.
 (a) Freas, R. B.; Campana, J. E. J. Am. Chem. Soc. 1985, 107, 6202.
 (b) Drewello, T.; Eckart, K.; Lebrilla, C. B.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1987, 76, R1. Cooks, R. G.; Beynon, J. H.; Caprioli, R. M.; Lester, G. R. Metastable Ions; Elsevier: Amsterdam, 1973. (68)
- (69)
- Metastable Ions; Elsevier: Amsterdam, 1973.
 (70) Reviews: (a) Levsen, K.; Schwarz, H. Mass Spectrom. Rev. 1983, 2, 77. (b) Hayes, R. N.; Gross, M. L. In Methods in Enzymology; McCloskey, Ed.; Academic Press: San Diego, CA, 1990; Vol. 193, p 237. (c) Cooks, R. G. Collision Spec-troscopy; Plenum Press: New York, 1978.
 (71) Eller, K.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1960, 242
- 1989, 93, 243.
- (72) Eller, K.; Zummack, W.; Schwarz, H. J. Am. Chem. Soc. 1990, *112*, 621
- Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1980, 102, 7129. Larsen, B. S.; Ridge, D. P. J. Am. Chem. Soc. 1984, 106, 1912.
- **'74**`
- Hanratty, M. A.; Beauchamp, J. L.; Illies, A. J.; Bowers, M. T. J. Am. Chem. Soc. 1985, 107, 1788. (75)
- Hanratty, M. A.; Beauchamp, J. L.; Illies, A. J.; van Koppen, P.; Bowers, M. T. J. Am. Chem. Soc. 1988, 110, 1. Georgiadis, R.; Armentrout, P. B. J. Phys. Chem. 1988, 92, (76)
- (77)7060
- Elkind, J. L.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1989, 93, 3151. (78)
- Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1984, (79)106.8117
- Elkind, J. L.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1988, 83, 259. (80)(81)
- Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1985, 89, 5626(82)
- Elkind, J. L.; Armentrout, P. B. J. Chem. Phys. 1987, 86, 1 968 Elkind, J. L.; Armentrout, P. B. J. Chem. Phys. 1986, 84, (83)
- 4862Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1986, 90, (84)
- (85)
- Halle, L. F.; Klein, F. S.; Beauchamp, J. L. J. Am. Chem. Soc. 1984, 106, 2543. Armentrout, P. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1981,
- (86)103.784
- Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1986, 90, (87) 6576.
- (88) Armentrout, P. B.; Beauchamp, J. L. Chem. Phys. 1980, 50,
- Elkind, J. L.; Armentrout, P. B. Inorg. Chem. 1986, 25, 1078. (89)Mandich, M. L.; Halle, L. F.; Beauchamp, J. L. J. Am. Chem. (90)
- Manuch, M. L., Hane, L. F., Beauchamp, J. L. J. Am. Chem.
 Soc. 1984, 106, 4403.
 Armentrout, P. B.; Halle, L. F.; Beauchamp, J. L. J. Am.
 Chem. Soc. 1981, 103, 6501.
 Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1987, 91, (91)
- (92)2037.
- Elkind, J. L.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 2037.
 (a) Schilling, J. B.; Goddard, W. A., III; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 582. (b) Schilling, J. B.; Goddard, W. A., III; Beauchamp, J. L. J. Phys. Chem. 1987, 91, 5616.
 (c) Schilling, J. B.; Goddard, W. A., III; Beauchamp, J. L. J. Am. Chem. Soc. 1987, 109, 5565. (d) Alvarado-Swaisgood, A. E.; Harrison, J. F. J. Phys. Chem. 1988, 92, 2757. (e) Alvarado-Swaisgood, A. E.; Harrison, J. F. J. Phys. Chem. 1985, 89, 5198. (f) Alvarado-Swaisgood, A. E.; Allison, J.; Harrison, J. F. J. Phys. Chem. 1985, 89, 5198. (f) Alvarado-Swaisgood, A. E.; Allison, J.; Harrison, J. F. J. Phys. Chem. 1985, 89, 2517. (g) Balasubramanian, K.; Li, J. J. Phys. Chem. 1980, 94, 4415. (h) Mavridis, A.; Harrison, J. F. J. Chem. Soc., Faraday Trans. 2 1989, 85, 1391.
 (i) Ohanessian, G.; Brusich, M. J.; Goddard, W. A., III. J. Am. Chem. Soc. 1990, 112, 7179. (j) Ziegler, T.; Snijders, J. G.; Baerends, E. J. J. Chem. Phys. 1981, 74, 1271. (k) Ohanessian, G.; Goddard, W. A., III. Acc. Chem. Res. 1990, 23, 386.
 (l) Langhoff, S. R.; Bauschlicher, C. W., Jr. Ann. Rev. Phys. Chem. 1988, 39, 181. (m) Wang, S. W.; Pitzer, K. S. J. Cohem. Phys. 1983, 79, 3551. (n) Stoll, H.; Fuentealba, P.; Dolg, M.; Flad, J.; v. Szentpály, L.; Preuss, H. J. Chem. Phys. 1983, 79, 5532. (o) Das, K. K.; Balasubramanian, K. J. Chem. Phys. 1989, 91, 2433. (p) Pykkö, P. J. Chem. Soc., Faraday Trans. 2 1979, 25, 1256. (n) Ziegler, T. Snijders, J. G. Sharenday, Trans. 2 1979, 25, 1256. (n) Ziegler, T. Snijders, J. G. Sharenday, Trans. 2 1979, 25, 1256. (n) Ziegler, T. Snijders, J. G. Sharenday, Trans. 2 1979, 25, 1256. (n) Ziegler, T. Snijders, J. G. Baerenda, E. 1970, 25, 1256. (n) Ziegler, T. Snijders, J. G. Baerenda, E. 1971. (93) Jass, K. K.; Balasubramanian, K. J. Chem. Phys.
 1989, 91, 2433. (p) Pykkö, P. J. Chem. Soc., Faraday Trans.
 2 1979, 75, 1256. (q) Ziegler, T.; Snijders, J. G.; Baerends, E. J. In The Challenge of d and f Electrons; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series 394; American Chemical Society: Washington, DC, 1989; p 322. (r) Ziegler, T.; Tschinke, V.; Becke, A. J. Am. Chem. Soc. 1987, 109, 1351. (s) Ramos, A. F.; Pyper, N. C.; Malli, G. L. Phys. Rev. A 1988, 38, 2729. (t) Das, K. K.; Balasubramanian, K. J. Mol. Spectrosc. 1991, 147, 114. (u) Das, K. K.; Balasubramanian, K. J. Mol. Spectrosc. 1991, 148, 250. (v) Das, K. K.; Balasubramanian, K. J. Chem. Phys. 1991, 94, 3722. (w) Krauss, M.; Stevens, W. J. J. Comput. Chem. 1983, 4, 127. (a) Pettersson, L. G. M.; Bauschlicher, C. W., J.; Langhoff, S. R.; Partridge, H. J. Chem. Phys. 1987, 87, 481. (b) Bruna, P. J.; Anglada, J. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A.,
- (94)Transition Metals and Coordination Chemistry; Veillard, A.,

Ed.; D. Reidel: Dordrecht, 1986; p 67. (c) McKee, M. L. J. Am. Chem. Soc. 1990, 112, 2601. (d) Sodupe, M.; Lluch, J. M.; Oliva, A.; Illas, F.; Rubio, J. J. Chem. Phys. 1989, 90, 6436. See also: (e) Balasubramanian, K.; Feng, P. Y.; Liao, M. Z. J. Chem. Phys. 1988, 88, 6955. (f) Balasubramanian, K. J. Chem. Phys. 1987, 87, 2800.
(95) Blomberg, M.; Brandemark, U.; Panas, I.; Siegbahn, P.; Wahlgren, U. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A., Ed. D. Beidel: Dordrecht. 1986; n 1.

- Wanigren, O. in Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 1.
 (96) Bauschlicher, C. W., Jr.; Langhoff, S. R. Int. Rev. Phys. Chem. 1990, 9, 149.
 (97) (a) Schilling, J. B.; Goddard, W. A., III; Beauchamp, J. L. J. Phys. Chem. 1987, 91, 4470. (b) Rappé, A. K.; Upton, T. H. J. Chem. Phys. 1986, 85, 4400. (c) Rivera, M.; Harrison, J. F.; Alvarado-Swaisgood, A. J. Phys. Chem. 1990, 94, 6669. (d) Das, K. K.; Balasubramanian, K. J. Chem. Phys. 1989, 91, 6254. (e) Bauschlicher, C. W., Jr.; Langhoff, S. R. J. Phys. Chem. 1991, 95, 2278. (f) Knight, L. B., Jr.; Cobranchi, S. T.; Herlong, J.; Kirk, T.; Balasubramanian, K.; Das, K. K. J. Chem. Phys. 1990, 92, 2721.
 (98) Loh, S. K.; Fisher, E. R.; Lian, L.; Schultz, R. H.; Armentrout, P. B. J. Phys. Chem. 1989, 93, 3159.
 (99) Armentrout, P. B.; Halle, L. F.; Beauchamp, J. L. J. Chem. Phys. 1982, 76, 2449.
 (100) Fisher, E. R.; Elkind, J. L.; Clemmer, D. E.; Georgiadis, R.; Loh, S. K.; Aristov, N.; Sunderlin, L. S.; Armentrout, P. B. J. Chem. Phys. 1990, 93, 2676.
 (101) Armentrout, P. B.; Beauchamp, J. L. Chem. Phys. 1980, 50, 27.
 (102) (a) Kanpes M M.; Staley R H. J. Phys. Chem. 1981, 85

- (102) (a) Kappes, M. M.; Staley, R. H. J. Phys. Chem. 1981, 85, 942. (b) Kappes, M. M.; Staley, R. H. In Ion Cyclotron Resonance Spectrometry II; Lecture Notes in Chemistry Vol. 31; Hartmann, H., Wanczek, K.-P., Eds.; Springer-Verlag: Berlin, 1982; p 119.
 (103) Schilling, J. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1988, 110, 15
- 110, 15.
- 110, 15.
 (104) Bartmess, J. E.; Kester, J. G. Inorg. Chem. 1984, 23, 1877.
 (105) Hettich, R. L.; Jackson, T. C.; Stanko, E. M.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, 5086.
 (106) Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1986, 90, 5135.
 (107) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94, 208.
 (108) Chem. 1990, 94, 208.

- (107) Cleminer, D. E., Sunderlin, L. S., Armentrout, F. B. J. Phys. Chem. 1990, 94, 208.
 (108) Strobel, F.; Ridge, D. P. J. Phys. Chem. 1989, 93, 3635.
 (109) (a) Harrison, J. F. J. Phys. Chem. 1986, 90, 3313. (b) Alvarado-Swaisgood, A. E.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 5896. (c) Kunze, K. L.; Harrison, J. F. J. Phys. Chem. 1988, 92, 2109. (g) Takahara, Y.; Yamaguchi, K.; Fueno, T. Chem. Phys. Lett. 1989, 158, 95. (h) Tilson, J. L.; Harrison, J. F. J. Phys. Chem. 1991, 95, 5097. See also: (i) Dyke, J. M.; Gravenor, B. W. J.; Josland, G. D.; Lewis, R. A.; Morris, A. Mol. Phys. 1984, 53, 465.
 (110) (a) Hildenbrand, D. L. Chem. Phys. Lett. 1975, 34, 352. (b) Dyke, J. M.; Gravenor, B. W. J.; Hastings, M. P.; Morris, A. J. Phys. Chem. 1985, 89, 4613.
 (111) Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, 1120.

- (11) Backstri, 1: 0., Carlin, 1: 0., 1: Clear, D. C. J. M. Chem. Occ. 1986, 108, 1120.
 (113) Huang, Y.; Wise, M. B.; Jacobson, D. B.; Freiser, B. S. Organometallics 1987, 6, 346.
 (114) Buckner, S. W.; MacMahon, T. J.; Byrd, G. D.; Freiser, B. S. Inorg. Chem. 1989, 28, 3511.
- (115) For a review of this technique, see: Graul, S. T.; Squires, R. R. Mass Spectrom. Rev. 1988, 7, 263.
 (116) Tonkyn, R.; Ronan, M.; Weisshaar, J. C. J. Phys. Chem. 1988, 92, 92.
- (117) Kemper, P. R.; Bowers, M. T. J. Am. Soc. Mass Spectrom. 1990, 1, 197.
- (118) Kemper, P. R.; Bowers, M. T. J. Am. Chem. Soc. 1990, 112,

- (123) Huang, S. K.; Gross, M. L. J. Phys. Chem. 1985, 89, 4422.
 (124) Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1989,
- (125) (a) Wise, M. B.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 1590. (b) Wise, M. B.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 6744.
- (126) Sunderlin, L. S.; Armentrout, P. B. J. Am. Chem. Soc. 1989,
- 111, 3845.

- (127) Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 1209.
- (128) Aristov, N.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 6178.
 (129) Georgiadis, R.; Armentrout, P. B. J. Phys. Chem. 1988, 92, 7067
- (130) Schultz, R. H.; Elkind, J. L.; Armentrout, P. B. J. Am. Chem. Soc. 1988, 110, 411.
- (131) For D°([M]-H), see: Pearson, R. H. Chem. Rev. 1985, 85, 41.
 (132) (a) Halpern, J. Inorg. Chim. Acta 1985, 100, 41. (b) Halpern, J. Acc. Chem. Res. 1982, 15, 238.
- (133) Martinho Simões, J. A.; Beauchamp, J. L. Chem. Rev. 1990, 90. 629.
- (134) (a) Marks, T. J.; Gagne, M. R.; Nolan, S. P.; Schock, L. E.; Segam, A. M.; Stern, D. Pure Appl. Chem. 1989, 61, 1665. (b) Nolan, S. P.; Stern, D.; Marks, T. J. J. Am. Chem. Soc. 1989, 111, 7844. (c) Bruno, J. W.; Marks, T. J.; Morss, L. R. J. Am. Chem. Soc. 1983, 105, 6824. (d) Lichtenberger, D. L.; Darsey, G. P.; Kellogg, G. E.; Sanner, R. D.; Young, V. G., Jr.; Clark, J. R. J. Am. Chem. Soc. 1989, 111, 5019. (e) Ziegler, T.; Tschinke, V.; Versluis, L.; Baerends, E. J.; Ravenek, W. Polyhedron 1988, 7, 1625. (f) Stoutland, P. O.; Bergman, R. G.; Nolan, S. P.; Hoff, C. D. Polyhedron 1988, 7, 1429. (g) Bruno, J. W.; Stecher, H. A.; Morss, L. R.; Sonnenberger, D. C.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 7275. See, however: (h) Bryndza, H. E.; Domaille, P. J.; Tam, W.; Fong, L. K.; Paciello, R. A.; Bercaw, J. E. Polyhedron 1988, 7, 1441.
 (135) Calhorda, M. J.; Martinho Simões, J. A. Organometallics 1987, 6, 1188.
 (136) Labinger, J. A.; Bercaw, J. E. Organometallics 1988, 7, 926.

- (136) Labinger, J. A.; Bercaw, J. E. Organometallics 1988, 7, 926.
 (137) (a) Ziegler, T.; Tschinke, V. In Bonding Energetics in Organometallic Compounds; Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington, DC, 1990; p 279. (b) Ziegler, T.; Cheng, W.; Baerends, E. J.; Ravenek, W. Inorg. Chem. 1988, 27, 3458. (c) Ziegler, T. Pure Appl. Chem. 1991, 63, 873.
 (138) Aristov, N.; Armentrout, P. B. J. Am. Chem. Soc. 1984, 106, 4065
- 4065.
- (139) Armentrout, P. B.; Sunderlin, L. S.; Fisher, E. R. Inorg. Chem. 1989, 28, 4436.
 (140) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107,
- (141) Hettich, R. L.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, (142) Hettich, R. L.; Freiser, B. S. J. Am. Chem. Soc. 1987, 109,
- (143) Schilling, J. B.; Goddard, W. A., III; Beauchamp, J. L. J. Am. Chem. Soc. 1987, 109, 5573.
 (144) (a) Carter, E. A.; Goddard, W. A., III. J. Phys. Chem. 1984,
- (a) Carter, E. A.; Goddard, W. A., III. J. Phys. Chem. 1984, 88, 1485. (b) Carter, E. A.; Goddard, W. A., III. J. Am. Chem. Soc. 1986, 108, 4746. (c) Vincent, M. A.; Yoshioka, Y.; Schaefer, H. F., III. J. Phys. Chem. 1982, 86, 3905. (d) Pla-nelles, J. P.; Merchán, M.; Nebot-Gil, I.; Tomás, J. J. Phys. Chem. 1989, 93, 6596. (e) Carter, E. A.; Goddard, W. A., III. J. Am. Chem. Soc. 1986, 108, 2180.
 Mauxidia, A.; Aluzado, Sunaircod, A. F.; Harrison, J. F. J.
- (145) Mavridis, A.; Alvarado-Swaisgood, A. E.; Harrison, J. F. J. *Phys. Chem.* 1986, 90, 2584.
 (146) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Partridge, H.; Barnes, L. A. J. Chem. Phys. 1989, 91, 2399.
 (147) Carter, E. A.; Goddard, W. A., III. J. Phys. Chem. 1988, 92, error.
- 5679.
- (148) Tonkyn, R.; Weisshaar, J. C. J. Am. Chem. Soc. 1986, 108,
- (149) Buckner, S. W.; Freiser, B. S. J. Am. Chem. Soc. 1987, 109, 1247.
- (150) Gord, J. R.; Freiser, B. S.; Buckner, S. W. J. Chem. Phys. 1989, 91, 7530. (151) For example: Georgiadis, R.; Armentrout, P. B. Int. J. Mass
- Spectrom. Ion Processes 1989, 91, 123. (152) Sunderlin, L. S.; Armentrout, P. B. Int. J. Mass Spectrom.
- Ion Processes 1989, 94, 149. Tonkyn, R.; Weisshaar, J. C. J. Phys. Chem. 1986, 90, 2305. (153)
- (154) Sunderlin, L. S.; Aristov, N.; Armentrout, P. B. J. Am. Chem. Soc. 1987, 109, 78.
- (155) Tolbert, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7509.
- (156) Byrd, G. D.; Burnier, R. C.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 3565.
- (157) Schilling, J. B.; Beauchamp, J. L. Organometallics 1988, 7, 194.
- (158) (a) Rosi, M.; Bauschlicher, C. W., Jr. Chem. Phys. Lett. 1990, 166, 189. (b) Swope, W. C.; Schaefer, H. F., III. Mol. Phys. 1977, 34, 1037. (c) Miralles-Sabater, J.; Merchán, M.; Ne-bot-Gil, I.; Viruela-Martín, P. M. J. Phys. Chem. 1988, 92, 4853
- (159) (a) Basch, H. J. Chem. Phys. 1972, 56, 441. (b) Kelber, J. A.; Harrah, L. A.; Jennison, D. R. J. Organomet. Chem. 1980, 199, 281. (c) Ziegler, T.; Rauk, A. Inorg. Chem. 1979, 18, 1558. (d) Sarasa, J. P.; Poblet, J. M.; Anglada, J.; Caballol, R. Chem. Phys. Lett. 1990, 167, 421. See also: (e) Bach, R. D.; Henneike, H. F. J. Am. Chem. Soc. 1970, 92, 5589. (f)

- Sakaki, S. Theor. Chim. Acta 1973, 30, 159. (160) Aristov, N.; Armentrout, P. B. J. Am. Chem. Soc. 1986, 108, 1806.
- (161) (a) Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Chem. Phys. 1990, 92, 3485. (b) Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Chem. Phys. 1990, 92, 3498.
- Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Phys. Chem. (162)1987, 91, 5145.
- Sanders, L.; Hanton, S. D.; Weisshaar, J. C. J. Phys. Chem. 1989, 93, 1963. (163)
- (164)Sunderlin, L. S.; Armentrout, P. B. Organometallics 1990, 9, 1248.
- (165) Cross, R. J. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley-Interscience: New York, 1985; Vol. 2, p 559.
 (166) (a) Norton, J. R. Acc. Chem. Res. 1979, 12, 139. (b) Halpern, J. Acc. Chem. Res. 1982, 15, 332. (c) Tatsumi, K.; Hoffmann, R.; Yamamoto, A.; Stille, J. K. Bull. Chem. Soc. Jpn. 1981, 54, 1987. 54, 1857.
- R.; Yamamoto, A.; Stille, J. K. Bull. Chem. Soc. Jpn. 1981, 54, 1857.
 For theoretical studies on reductive elimination/oxidative addition of H₂ from/to transition-mdetal centers, see: (a) References 2a, c-g.i, k.j., 3d, 931, o.p. 94e, f, 97b, d.f. (b) Jeung, G. H. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 101. (c) Hay, P. J.; McMichael Rohlfing, C. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 135. (d) Li, J.; Schiætt, B.; Hoffmann, R.; Proserpio, D. M. J. Phys. Chem. 1990, 94, 1554. (e) Kitaura, K.; Obara, S.; Morokuma, K. J. Am. Chem. Soc. 1981, 103, 2891. (f) Blomberg, M.; Brandemark, U.; Pettersson, L.; Siegbahn, P. Int. J. Quantum Chem, 1983, 23, 855. (g) Jarque, C.; Novaro, O.; Ruiz, M. E.; Garcia-Prieto, J. J. Am. Chem. Soc. 1982, 104, 4578. (i) Novaro, O.; Garcia-Prieto, J.; Poulain, E.; Ruiz, M. E. J. Mol. Struct. (THEOCHEM) 1986, 135, 79. (j) Blomberg, M. R. A.; Siegbahn, P. E. M. J. Chem. Phys. 1983, 78, 5682. (k) Rappé, A. K. Organometallics 1987, 6, 354. (l) Brandemark, U. B.; Blomberg, M. R. A.; Pettersson, L. G. M.; Siegbahn, P. E. M. J. Phys. Chem. 1984, 88, 4617. (m) Siegbahn, P. E. M. J. Phys. Chem. 1984, 88, 4617. (m) Siegbahn, P. E. M. J. Phys. Chem. 1984, 77, 452. (p) Demuynck, J.; Schaefer, H. F., 111. J. Chem. Phys. 1980, 72, 311. (q) Guse, M. P.; Blint, R. J.; Kunz, A. B. Int. J. Quantum. Chem. 1977, 11, 725. (r) Nakatsuji, H.; Hada, M. J. Am. Chem. Soc. 1985, 107, 8264.
 (a) Li, J.; Balasubramanian, K. J. Phys. Chem. 1989, 93, 99. (u) Kunz, A. B.; Guse, M. P.; Blint, R. J. Chem. Phys. 1984, 80, 1529. (w) Garcia-Prieto, J.; Novaro, O. J. Chem. Phys. 1984, 80, 1529. (w) Garcia-Prieto, J.; Novaro, O. J. Chem. Phys. 1984, 80, 1529. (w) Balasubramanian, K.; Liao, M. Z. J. Chem. Phys. 1989, 93, 99. (u) Kunz, A. B.; Guse, M. P.; Blint, R. J. Chem. Phys. 1989, 93, 99. (u) Kunz, A. B.; Guse, (167) For theoretical studies on reductive elimination/oxidative Chem. Soc. 1986, 108, 6567. (ae) Kunz, A. B.; Guse, M. P.;
 Blint, R. J. Int. J. Quantum Chem., Quantum Chem., Symp.
 1976, 10, 283. (af) Balasubramanian, K. Int. J. Quantum Chem., Quantum Chem., Symp. 1988, 22, 465. (ag) Sevin, A. Nouv. J. Chim. 1981, 5, 233. (ah) Sevin, A.; Chaquin, P. Nouv. J. Chim. 1983, 7, 353. (ai) Hay, P. J. J. Am. Chem. Soc. 1987, 109, 705. (aj) Balasubramanian, K.; Liao, M. Z. J. Phys. Chem. 1988, 92, 361. (ak) Kober, E. M.; Hay, P. J. In The Challenge of d and f Electrons; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series 394; American Chemical Society: Washington, DC, 1989; p 92. (al) Novaro, O. A. In The Challenge of d and f Electrons; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series 394; American Chemical Society: Washington, DC, 1989; p 106. (am) Das, K. K.; Balasubramanian, K. J. Phys. Chem. 1991, 95, 42. (an) Mains, G. J.; White, J. M. J. Phys. Chem. 1991, 95, 42. (an) Balasubramanian, K. J. Phys. Chem. 1991, 95, 685. (ap) Ruette, F.; Blyholder, G.; Head, J. J. Chem. Phys. 1984, 80, 2042. (aq) Das, K. K.; Balasubramanian, K. J. Phys. Chem. 1991, 95, 3979. (ar) Garcia-Prieto, J.; Ruiz, M. E.; Novaro, O. J., Am. Chem. Soc. 1985, 107, 5635. (as) Ruiz, M. E.; Garcia-Prieto, J.; Poulain, E.; Ozin, G. A.; Poirier, R. A.; Matta, S. M.; Czismadia, I. G.; Gracie, C.; Novaro, O. J. Phys. Chem. 1986, 90, 279.
- Chem. 1986, 90, 279. Stille, J. K. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Patai, S., Eds.; Wiley-Interscience: New York, 1985; Vol. 2, p 625. (168)

- (169) van Koppen, P. A. M.; Brodbelt-Lustig, J.; Bowers, M. T.; Dearden, D. V.; Beauchamp, J. L.; Fisher, E. R.; Armentrout, P. B. J. Am. Chem. Soc. 1990, 112, 5663.
 (170) Jarrold, M. F.; Illies, A. J.; Kirchner, N. J.; Wagner-Redeker, W.; Bowers, M. T.; Mandich, M. L.; Beauchamp, J. L. J. Phys. Chem. 1983, 87, 2213.
 (171) van Koppen, P. A. M.; Brodbelt-Lustig, J.; Bowers, M. T.; Dearden, D. V.; Beauchamp, J. L.; Fisher, E. R.; Armentrout, P. B. J. Am. Chem. Soc. 1991, 113, 2359.
 (172) Schultz, R. H.; Armentrout, P. B. J. Am. Chem. Soc. 1991.

- (172) Schultz, R. H.; Armentrout, P. B. J. Am. Chem. Soc. 1991, 113, 729
- (173) Schultz, R. H.; Armentrout, P. B. J. Phys. Chem. 1987, 91, 4433.
- (174) Hanton, S. D.; Noll, R. J.; Weisshaar, J. C. J. Phys. Chem. 1990, 94, 5655. (175) Allison, J.; Freas, R. B.; Ridge, D. P. J. Am. Chem. Soc. 1979,
- 101.1332
- (176) Halle, L. F.; Houriet, R.; Kappes, M. M.; Staley, R. H.; Beauchamp, J. L. J. Am. Chem. Soc. 1982, 104, 6293.
 (177) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105,
- (178) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105, 5197.
- (179) Peake, D. A.; Gross, M. L.; Ridge, D. P. J. Am. Chem. Soc. 1984, 106, 4307
- (180) Houriet, R.; Halle, L. F.; Beauchamp, J. L. Organometallics 1983, 2, 1818.
- (181) Halle, L. F.; Armentrout, P. B.; Beauchamp, J. L. Organometallics 1982, 1, 963.
- (182) Radecki, B. D.; Allison, J. Organometallics 1986, 5, 411.
 (183) Hankinson, D. J.; Allison, J. J. Phys. Chem. 1987, 91, 5307.
 (184) Tsarbopoulos, A.; Allison, J. J. Am. Chem. Soc. 1985, 107,
- (185) Eller, K.; Drewello, T.; Zummack, W.; Allspach, T.; Annen, U.; Regitz, M.; Schwarz, H. J. Am. Chem. Soc. 1989, 110, 4228
- (186) β -Alkyl transfer has indeed been observed for highly electrophilic scandium complexes in solution: (a) Bunel, E.; trophilic scandium complexes in solution: (a) Bunel, E.;
 Burger, B. J.; Bercaw, J. E. J. Am. Chem. Soc. 1988, 110, 976.
 (b) Bercaw, J. E. Pure Appl. Chem. 1990, 62, 1151. (c) Parkin, G.; Bunel, E.; Burger, B. J.; Trimmer, M. S.; Van Asselt, A.; Bercaw, J. E. J. Mol. Catal. 1987, 41, 21. See also: (d)
 Watson, P. L.; Roe, D. C. J. Am. Chem. Soc. 1982, 104, 6471.
 (e) Eshuis, J. J. W.; Tan, Y. Y.; Teuben, J. H.; Renkema, J. J. Mol. Catal. 1990, 62, 277.
 Mestdeet, H.; Morin, N.; Bolando, C. Spectrosc. Int. J. 1987
- (187) Mestdagh, H.; Morin, N.; Rolando, C. Spectrosc. Int. J. 1987, , 273.
- (188) Georgiadis, R.; Fisher, E. R.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 4251.
 (189) Sunderlin, L. S.; Armentrout, P. B. J. Phys. Chem. 1990, 94,
- 3589.
- (190) Georgiadis, R.; Armentrout, P. B. J. Am. Chem. Soc. 1986,
- (190) Georgiadis, R.; Armentrout, F. B. J. Am. Chem. Soc. 1005, 108, 2119.
 (191) (a) Walch, S. P.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1983, 78, 4597. (b) Anglada, J.; Bruna, P. J.; Peyerimhoff, S. D.; Buenker, R. J. J. Mol. Struct. (THEOCHEM) 1983, 93, 299. (c) Das, G. J. Chem. Phys. 1981, 74, 5766. (d) Bauschlicher, C. W., Jr.; Walch, S. P.; Langhoff, S. R. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry: Veillard. A.: Ed.: D. Reidel: Dordrecht, dination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 15. (e) Barthelat, J. C.; Hliwa, M.; Nicolas, G.; Pélissier, M.; Spiegelmann, F. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemis-Pélissier, M.; Spiegelmann, F. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 91. (f) Chong, D. P.; Langhoff, S. R.; Bauschlicher, C. W., Jr.; Walch, S. P.; Partridge, H. J. Chem. Phys. 1986, 85, 2850. (g) Langhoff, S. R.; Pettersson, L. G. M.; Bauschlicher, C. W., Jr.; Partridge, H. J. Chem. Phys. 1987, 86, 268. (h) Martin, R. L. J. Phys. Chem. 1983, 87, 750. (i) Blomberg, M. R. A.; Siegbahn, P. E. M.; Roos, B. O. Mol. Phys. 1982, 47, 127. (j) Bagus, P. S.; Schaefer, H. F., III. J. Chem. Phys. 1973, 58, 1844. (k) Lee, Y. S.; McLean, A. D. J. Chem. Phys. 1982, 76, 735. (l) Das, K. K.; Balasubramanian, K. Chem. Phys. 1982, 76, 735. (l) Das, K. K.; Balasubramanian, K. Chem. Phys. 1982, 76, 735. (l) Das, K. J.; See also: (m) Ross, R. B.; Ermler, W. C. J. Phys. Chem. 1985, 89, 5202. (n) Loades, S. D.; Cooper, D. C.; Gerratt, J.; Raimondi, M. J. Chem. Soc., Chem. Commun. 1989, 1604. (o) Musaev, D. G.; Charkin, O. P. Russ. J. Coord. Chem. Phys. 1975, 63, 1690. (q) Bauschlicher, C. W., Jr.; Walch, S. P. J. Chem. Phys. 1982, 76, 4560. (r) Walch, S. P. Chem. Phys. Lett. 1984, 105, 54. (s) Pacchioni, G.; Koutecký, J. In Quantum Chemistry: The Challenge of Transiton Metals and Coordination Chemistry; Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p 465. (t) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Komornicki, A. Theor. Chim. Acta 1990, 77, 263. (u) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Komornicki, A. Theor. Chim. Acta 1990, 77, 263. (u) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Komornicki, A. Theor. Chim. Acta 1990, 77, 263. (u) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Komornicki, A. Theor. Chim. Acta 1990, 77, 263. (u) Bauschlicher, C. W., Jr.; Langhoff, S. R.; Komornicki, A. Theor. Chim. Acta 1990, 77, 263. (u) Bauschlicher, C. W., Jr.; Langhoff, S. R. J. Chem. Phys. 1985, 83, 5351. (x) Snijders, J. G.; Pyykkö, P.

Chem. Phys. Lett. 1980, 75, 5. (y) Klobukowski, M. J. Com-put. Chem. 1983, 4, 350. (z) Simons, G.; Talaty, E. R. J. Chem. Phys. 1977, 66, 2457.

- Chem. Phys. Lett. 1980, 75, 5. (y) Klobukowski, M. J. Comput. Chem. 1983, 4, 350. (z) Simons, G.; Talaty, E. R. J. Chem. Phys. 187, 66, 2457.
 (192) (a) Bagus, P. S.; Björkman, C. Phys. Rev. A 1981, 23, 461. (b) Walch, S. P.; Bauschlicher, C. W., Jr. Chem. Phys. Lett. 1982, 86, 66. (c) Dunlap, B. I.; Yu, H. L. Chem. Phys. Lett. 1982, 73, 525. (d) Pélissier, M.; Daudey, J. P.; Malrieu, J. P.; Jeung, G. H. In Quantum Chemistry: The Challenge of Transition Metals and Coordination Chemistry, Veillard, A., Ed.; D. Reidel: Dordrecht, 1986; p. 73. (e) Wedig, U.; Dölg, M.; Stoll, H.; Preuss, H. In Quantum Chemistry, 1985, 83, 2805. (g) Hay, P. J.; Martin, R. L. J. Chem. Phys. 1975, 63, 2805. (g) Hay, P. J.; Martin, R. L. J. Chem. Phys. 1985, 85, 1514. (i) McLean, A. D. J. Chem. Phys. 1985, 89, 2174. (i) Liuch, J. M.; Oliva, A.; Illas, F.; Rubio, J. J. Chem. Phys. 1990, 92, 2478. (i) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86, 2123. (k) Basch, H.; Topiol, S. J. Chem. Phys. 1987, 96, 2123. (k) Basch, H.; Topiol, S. J. Chem. Phys. 1979, 71, 802. (i) Paccioni, G.; Koutecký, J.; Fantucci, P. Chem. Phys. Lett. 1982, 92, 486. (m) Balasubramanian, K.; Wang, J. Z. Chem. Phys. Lett. 1989, 164, 526. (o) Blint, R. J.; Kunz, A. B.; Guuse, M. P. Chem. Phys. Lett. 1975, 36, 191. (p) Bauschlicher, C. W., J. J. Phys. Chem. Phys. 1987, 87, 3995. (t) Jeung, G. H.; Koutecký, J. J. Chem. Phys. 1986, 88, 3747. (u) Chong, D. P.; Langhoff, S. R. J. Chem. Phys. 1986, 84, 3666. (v) Raghavachari, K.; Sunil, K. K.; Jordan, K. D. J. Chem. Phys. 1985, 185, 126, 126. (a) Balasubramanian, K.; Feng, P. Y., Liao, M. Z. J. Chem. Phys. 1987, 87, 3995. (t) Jeung, G. H.; Koutecký, J. J. Chem. Phys. 1986, 84, 3747. (u) Chong, D. P.; Langhoff, S. R. J. Chem. Phys. 1986, 84, 3747. (u) Chong, D. P.; Langhoff, S. R. J. Chem. Phys. 1986, 84, 4666. (v) Raghavachari, K.; Sunil, K. K.; Jordan, K. D. J. Chem. Phys. 1985, 185, 126, 126. (c) Blint, R. J. Chem. Phys. 1986, 84, 3766. (c) R.; Sistin, J. R. Inchen, Phys. 1987, 89,

- Tolbert, M. A.; Beauchamp, J. L. J. Phys. Chem. 1986, 90, (196)
- Schultz, R. H.; Armentrout, P. B. J. Chem. Phys., submitted (197)
- (198)
- b Schultz, R. H.; Armentrout, P. B. J. Chem. Phys., submitted for publication.
 (a) Chappell, S. D.; Cole-Hamilton, D. J. Polyhedron 1982, 1, 739. (b) Grubbs, R. H.; Miyashita, A. In Fundamental Research in Homogeneous Catalysis; Ishii, Y., Tsutsui, M., Eds.; Plenum Press: New York, 1978; Vol. 2, p 207. (c) Wilke, G. Pure Appl. Chem. 1978, 50, 677.
 (a) Haines, R. J.; Leigh, G. J. Chem. Soc. Rev. 1975, 4, 155. (b) Calderon, N.; Ofstead, E. A.; Judy, W. A. Angew. Chem. 1976, 88, 433; Angew. Chem., Int. Ed. Engl. 1976, 15, 401. (c) Katz, T. J. Adv. Organomet. Chem. 1977, 16, 283. (d) Grubbs, R. H. Prog. Inorg. Chem. 1978, 24, 1. (e) Calderon, N.; Lawrence, J. P.; Ofstead, E. A. Adv. Organomet. Chem. 1979, 17, 449. (f) Parshall, G. W. Homogeneous Catalysis; Wiley-Interscience: New York, 1980; Chapter 9. (g) Grubbs, R. H. In Comprehensive Organometallic Chemistry; Wilkinson, G., Stone, F. G. A., Abel, E. W., Eds.; Pergamon Press: Oxford, 1982; Vol. 8, p 499. (h) Weiss, K. In Transition Metal Carbene Complexes; Dötz, K. H., Fischer, H., Hofmann, P., Kreissl, F. R., Schubert, U., Weiss, K., Eds.; Verlag. Chemie: Weinheim, 1983; p 227. (i) Ivin, J. K. Olefin Metathesis; Academic Press: London, 1983. (j) Crabtree, R. H.

The Organometallic Chemistry of the Transition Metals; Wiley-Interscience: New York, 1988; Chapter 11. (k) Schrock, R. R. Acc. Chem. Res. 1990, 23, 158. (l) Grubbs, R. H.; Tumas, W. Science 1989, 243, 907. (m) Feast, W. J.; Gibson, V. C. In The Chemistry of the Metal-Carbon Bond; Hartley, F. R., Ed.; Wiley-Interscience: New York, 1989; Vol. 5 p. 199. (m) See also the sensitive of a Mol. Carbon 1989; Vol. 5, p 199. (n) See also the special issues of *J. Mol. Catal.* 1985, 28 and *J. Mol. Catal.* 1988, 46 on olefin metathesis. (200) (a) Brookhart, M.; Studabaker, W. B. *Chem. Rev.* 1987, 87,

- b) p 199. (ii) See also the special issues of J. Mot. Catal. 1988, 26 on olefin metathesis.
 (200) (a) Brookhart, M.; Studabaker, W. B. Chem. Rev. 1987, 87, 411. (b) Brookhart, M.; Humphrey, M. B.; Kratzer, H. J.; Nelson, G. O. J. Am. Chem. Soc. 1980, 102, 7802. (c) Brookhart, M.; Tucker, J. R.; Husk, G. R. J. Am. Chem. Soc. 1983, 105, 258. (d) Reissig, H.-U. In Organometallics in Organic Synthesis 2; Werner, H., Erker, G., Eds.; Springer-Verlag: Heidelberg, 1989; p 311. (e) Söderberg, B. C.; Hegedus, L. S. Organometallics 1990, 9, 3113. (f) Dötz, K. H. Angew. Chem. 1984, 96, 573; Angew. Chem., Int. Ed. Engl. 1984, 23, 587. (g) Dötz, K. H. In Transition Metal Carbene Complexes; Dötz, K. H., Fischer, H., Hofmann, P., Kreissl, F. R., Schubert, U., Weiss, K., Eds.; Verlag Chemie: Weinheim, 1983; p 191. See howver: (h) Brookhart, M.; Liu, Y. In Advances in Metal Carbene Chemistry; Schubert, U., Ed.; Kluwer Academic Publishers: Dordrecht, 1989; p 251. (j) Casey, C. P.; Albin, L. D.; Burkhardt, T. J. J. Am. Chem. Soc. 1977, 99, 2533. (k) Fischer, H. In Organic Synthesis via Organometallics; Dötz, K. H., Hoffmann, R. W., Eds.; Vieweg: Braunschweig, 1991; p 41. (l) Brookhart, M.; Liu, Y.; Goldman, E. W.; Timmers, D. A.; Williams, G. D. J. Am. Chem. Soc. 1991, 113, 927.
 (201) Bishop, K. C., III. Chem. Rev. 1976, 76, 461.
 (202) (a) Ivin, K. J.; Rooney, J. J.; Stewart, C. D.; Green, M. L. H.; Mahtab, R. J. Chem. Soc., Chem. Commun. 1978, 604. (b) Green, M. L. H. Pure Appl. Chem. 1978, 50, 27. See, however: (c) Brookhart, M.; Green, M. L. H. J. Organomet. Chem. 1983, 250, 395. (d) Brookhart, M.; Green, M. L. H.; Wong, L.-L. Prog. Inorg. Chem. 1988, 36, 1. (e) Soto, J.; Steigerwald, M. L.; Grubbs, R. H. J. Am. Chem. Soc. 1982, 104, 4479. (f) Piers, W. E.; Bercaw, J. E. J. Am. Chem. Soc. 1990, 112, 9406. (g) Krauledat, H.; Brintzinger, H.-H. Angew. Chem. 1990, 102, 1459, Angew. Chem., Int. Ed. Engl. 1990, 29, 1412. (h) Brintzinger, H.-H. In Organic Synthesis via Organometallics; Dötz, K. H.

- eg: Braunschweig, 1991; p 33. (a) Hugues, F.; Besson, B.; Basset, J. M. J. Chem. Soc., Chem. Commun. 1980, 719. (b) O'Donohoe, C.; Clarke, J. K. A.; Rooney, J. J. J. Chem. Soc., Faraday Trans. 1 1980, 76, 345. (203)
- Commun. 1980, 719. (b) O'Donohoe, C.; Clarke, J. K. A.; Rooney, J. J. J. Chem. Soc., Faraday Trans. 1 1980, 76, 345.
 (a) Eisenstein, O.; Hoffmann, R.; Rossi, A. R. J. Am. Chem. Soc. 1981, 103, 5582. (b) Rappé, A. K.; Goddard, W. A., III. J. Am. Chem. Soc. 1980, 102, 5114. (c) Rappé, A. K.; God-dard, W. A., III. J. Am. Chem. Soc. 1982, 104, 297. (d) Rappé, A. K.; Goddard, W. A., III. J. Am. Chem. Soc. 1982, 104, 448. (e) Upton, T. H.; Rappé, A. K. J. Am. Chem. Soc. 1985, 107, 1206. (f) Bäckvall, J.-E.; Björkman, E. E.; Pet-tersson, L.; Siegbahn, P. E. M.; Strich, A. J. Am. Chem. Soc. 1985, 107, 7408. (g) Blomberg, M. R. A.; Siegbahn, P. E. M.; Bäckvall, J.-E. J. Am. Chem. Soc. 1987, 109, 4450. (h) Rappé, A. K.; Upton, T. H. Organometallics 1984, 3, 1440. (i) Rappé, A. K.; Goddard, W. A., III. Nature 1980, 285, 311. (j) Sodupe, M.; Lluch, J. M.; Oliva, A.; Bertrán, J. New J. Chem. 1991, 15, 321. (k) Goddard, W. A., III. Science 1985, 227, 917. (a) Gillard, R. D.; Keeton, M.; Mason, R.; Pilbrow, M. F.; Russell, D. R. J. Organomet. Chem. 1971, 33, 247. (b) McGinnety, J. A. J. Organomet. Chem. 1973, 59, 429. (c) Yarrow, D. J.; Ibers, J. A.; Lenarda, M.; Graziani, M. J. Or-ganomet. Chem. 1974, 70, 133. For further examples of pla-tinacyclobutanes, see: (d) Jain, V. K.; Rao, G. S.; Jain, L. Adv. Organomet. Chem. 1987, 27, 113. (e) Puddephatt, R. J. Coord. Chem. Rev. 1980, 33, 149. (f) Hoberg, J. O.; Jennings, P. W. Organomet(a) Collmann, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organo-(204)
- (205)
- Coora. Chem. Rev. 1980, 33, 149. (f) Hoberg, J. O.; Jennings, P. W. Organometallics 1991, 10, 8.
 (206) See, for example: (a) Collmann, J. P.; Hegedus, L. S.; Norton, J. R.; Finke, R. G. Principles and Applications of Organotransition Metal Chemistry; University Science Books: Mill Valley, CA, 1987; Chapter 9 and references therein. (b) Finck, W. C.; Anslyn, E. V.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 2406. (c) Lee, J. B.; Ott, K. C.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 2406. (c) Lee, J. B.; Ott, K. C.; Grubbs, R. H. J. Am. Chem. Soc. 1988, 110, 2406. (c) Lee, J. B.; Ott, K. C.; Grubbs, R. H. J. Am. Chem. Soc. 1980, 102, 6876. (e) Ephritikhine, M.; Green, M. L. H.; MacKenzie, R. E. J. Chem. Soc., Chem. Commun. 1976, 619. (f) Ephritikhine, M.; Francis, B. R.; Green, M. L. H.; MacKenzie, R. E.; Smith, M. J. J. Chem. Soc., Dalton Trans. 1977, 1131. (g) Tulip, T. H.; Thorn, D. L. J. Am. Chem. Soc. 1981, 103, 2448. (h) Bruno, J. W.; Marks, T. J.; Day, V. W. J. Am. Chem. Soc. 1982, 104, 7357. (i) Bickelhaupt, F. In Organometallics in Organic Synthesis 2; Werner, H., Erker, G., Eds.; Springer-Verlag: Heidelberg, 1989; p 145. (j) Feldman, J.; DePue, R. T.; Schaverien, C. J.; Davis, W. M.; Schrock, R. R. In Advances in Metal Carbene Chemistry; Schubert, U., Ed.; Kluwer Academic Publishers: Dordrecht, 1989; p 323. (k) Fendrick, C.

M.; Marks, T. J. J. Am. Chem. Soc. 1986, 108, 425. (1) Straus, D. A.; Grubbs, R. H. J. Mol. Catal. 1985, 28, 9. (m) Seetz, J. W. F. L.; van de Heisteeg, B. J. J.; Schat, G.; Akkerman, O. S.; Bickelhaupt, F. J. Mol. Catal. 1985, 28, 71. (n) Feldman, J.; Davis, W. M.; Thomas, J. K.; Schrock, R. R. Organo-metallics 1990, 9, 2535. (o) Bruno, J. W.; Smith, G. M.; Marks, T. J.; Fair, C. K.; Schultz, A. J.; Williams, J. M. J. Am. Chem. Soc. 1986, 108, 40. (p) Periana, R. A.; Bergman, R. G. J. Am. Chem. Soc. 1986, 108, 7346. (q) Erker, G.; Czisch, P.; Krüger, C.; Wallis, J. M. Organometallics 1985, 4, 2059. 2059

- (207) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105, 7492.
- (208) Georgiadis, R.; Armentrout, P. B. Int. J. Mass Spectrom. Ion Processes 1989, 89, 227.
- (209)Armentrout, P. B.; Beauchamp, J. L. J. Am. Chem. Soc. 1981, 103, 6628.
- (210) Armentrout, P. B.; Beauchamp, J. L. J. Chem. Phys. 1981, 4. 2819
- (211) Fisher, E. R.; Armentrout, P. B. J. Phys. Chem. 1990, 94,
- (212) Halle, L. F.; Armentrout, P. B.; Beauchamp, J. L. Organo-(212) Halle, L. F.; Armentrout, T. D., Deterministics 1983, 2, 1829.
 (213) Forbes, R. A.; Lech, L. M.; Freiser, B. S. Int. J. Mass Spectrom. Ion Processes 1987, 77, 107.
- van Koppen, P. A. M.; Jacobson, D. B.; Illies, A.; Bowers, M. T.; Hanratty, M. A.; Beauchamp, J. L. J. Am. Chem. Soc. (214)**1989**, *111*, 1991
- (215) For a recent theoretical study on the decompositions of
- (215) For a recent theoretical study on the decompositions of nickelacyclopentanes, see: Peluso, A.; Salahub, D. R.; Goursot, A. Inorg. Chem. 1990, 29, 1544.
 (216) For example: (a) McLain, S. J.; Sancho, J.; Schrock, R. R. J. Am. Chem. Soc. 1979, 101, 5451. (b) McDermott, J. X.; White, J. F.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521. (c) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6521. (c) McDermott, J. X.; Wilson, M. E.; Whitesides, G. M. J. Am. Chem. Soc. 1976, 98, 6529. (d) Grubbs, R. H.; Brunck, T. K. J. Am. Chem. Soc. 1976, 98, 6529. (d) Grubbs, R. H.; Brunck, T. K. J. Am. Chem. Soc. 1972, 94, 2538. (e) Nakamura, A. Coord. Chem. Rev. 1991, 109, 207.
 (217) For example: (a) Fraser, A. R.; Bird, P. H.; Bezman, S. A.; Shapley, J. R.; White, R.; Osborn, J. A. J. Am. Chem. Soc. 1973, 95, 597. (b) Hill, J. E.; Fanwick, P. E.; Rothwell, I. P. Organometallics 1991, 10, 15. (c) Grubbs, R. H.; Miyashita, A. J. Organomet. Chem. 1978, 161, 371. (e)
- A. J. Chem. Soc., Chem. Commun. 1977, 864. (d) Grubbs, R. H.; Miyashita, A. J. Organomet. Chem. 1978, 161, 371. (e) Grubbs, R. H.; Miyashita, A. J. Am. Chem. Soc. 1978, 100, 1300. (f) Erker, G.; Dorf, U.; Rheingold, A. L. Organometallics 1988, 7, 138. (g) McDermott, J. X.; Whitesides, G. M. J. Am. Chem. Soc. 1974, 96, 947. (h) McLain, S. J.; Wood, C. D.; Schrock, R. R. J. Am. Chem. Soc. 1977, 99, 3519. (i) Takahashi, T.; Fujimori, T.; Seki, T.; Saburi, M.; Uchida, Y.; Rousset, C. J.; Negishi, E.-i. J. Chem. Soc., Chem. Commun. 1990, 182. (j) Akita, M.; Yasuda, H.; Yamamoto, H.; Nakamura, A. Polyhedron 1991, 10, 1.
 (218) Jacobson, D. B.; Freiser, B. S. Organometallics 1984, 3, 513.
 (219) (a) van Koppen, P. A. M.; Bowers, M. T.; Beauchamp, J. L.; van Koppen, P. A. M.; Bowers, M. T. J. Am.
- Champ, J. L.; van Koppen, P. A. M.; Bowers, M. T. J. Am. Chem. Soc. 1990, 112, 9372.
 (220) Lech, L. M.; Freiser, B. S. Organometallics 1988, 7, 1948.
 (221) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105,
- 7484.
- Hettich, R. L.; Freiser, B. S. Organometallics 1989, 8, 2447. Armentrout, P. B.; Halle, L. F.; Beauchamp, J. L. J. Am. Chem. Soc. 1981, 103, 6624. (223)
- Eller, K.; Schwarz, H. Chem. Ber. 1990, 123, 201.
- Cassady, C. J.; McElvany, S. W. J. Am. Chem. Soc. 1990, 112, (225)4788.

- 4788.
 (226) Brown, J. M.; Cooley, N. A. Chem. Rev. 1988, 88, 1031.
 (227) Peake, D. A.; Gross, M. L. J. Am. Chem. Soc. 1987, 109, 600.
 (228) Hanratty, M. A.; Paulsen, C. M.; Beauchamp, J. L. J. Am. Chem. Soc. 1985, 107, 5074.
 (229) (a) Grubbs, R. H. Inorg. Chem. 1979, 18, 2623. (b) Hall, R. W.; Puddephatt, R. J.; Seddon, K. R.; Tipper, C. F. H. J. Organomet. Chem. 1974, 81, 423.
 (230) Peake, D. A.; Gross, M. L. Anal. Chem. 1985, 57, 115.
 (231) Peake, D. A.; Huang, S.-K.; Gross, M. L. Anal. Chem. 1987, 59, 1557.
- 59, 1557
- (232) Peake, D. A
- b3, 1357.
 Peake, D. A.; Gross, M. L. Organometallics 1986, 5, 1236.
 Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1977, 99, 35.
 Schulze, C.; Schwarz, H.; Peake, D. A.; Gross, M. L. J. Am. Chem. Soc. 1987, 109, 2368.
 Schulze, C.; Schwarz, H. Chimia 1987, 41, 29.
 Lebrilla, C. B.; Schulze, C.; Schwarz, H. J. Am. Chem. Soc. (233)(234)
- (235)
- (236)
- 1987, 109, 98 (237) (a) Breslow, R. Chem. Soc. Rev. 1972, 1, 553. (b) Breslow, R.
- (a) Breslow, R. Chem. Soc. Rev. 1972, 1, 553. (b) Breslow, R. Acc. Chem. Res. 1980, 13, 170.
 Schulze, C.; Weiske, T.; Schwarz, H. Chimia 1986, 40, 362.
 Schulze, C.; Schwarz, H. Chimia 1987, 41, 245.
 Schulze, C.; Schwarz, H. Angew. Chem. 1990, 102, 566; An-(238)
- (239)
- (240)gew. Chem., Int. Ed. Engl. 1990, 29, 509.

- (241) Schulze, C.; Weiske, T.; Schwarz, H. Organometallics 1988, 7, 898.
- (242) Schulze, C.; Schwarz, H. J. Am. Chem. Soc. 1988, 110, 67. (243) Schulze, C.; Schwarz, H. Int. J. Mass Spectrom. Ion Pro-
- (243) Schulze, C.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1989, 88, 291.
 (244) (a) Rabrenović, M.; Ast, T.; Beynon, J. H. Int. J. Mass Spectrom. Ion Processes 1984, 61, 31. (b) Porter, C. J.; Proctor, C. J.; Ast, T.; Beynon, J. H. Int. J. Mass Spectrom. Ion Phys. 1982, 41, 265. (c) Cooks, R. G.; Ast, T.; Beynon, J. H. Int. J. Mass Spectrom. J. H. Int. J. Mass Spectrom. Ion Phys. 1973, 11, 490.
 (245) Schulze, C.; Schwarz, H. Chimia 1988, 42, 297.
 (246) Fisher, E. R.; Armentrout, P. B. Private communication, 1990
- 1990.
- (247) For leading references concerning CIDI, see: (a) McLafferty,
 F. W. Science 1990, 247, 925. (b) Holmes, J. L. Mass Spectrom. Rev. 1989, 8, 513. (c) Wesdemiotis, C.; McLafferty, F. W. Chem. Rev. 1987, 87, 485. (d) Terlouw, J. K.; Schwarz,
 W. Chem. Rev. 1987, 87, 485. (d) Terlouw, J. K.; Schwarz, H. Angew. Chem. 1987, 99, 829; Angew. Chem., Int. Ed. Engl. 1987, 26, 805
- Schulze, C.; Schwarz, H. Organometallics 1990, 9, 2164. (a) Crabtree, R. H. In Ref 1p; p 79. (b) Hlatky, G. G.; Crabtree, R. H. Coord. Chem. Rev. 1985, 65, 1. (249)
- (249) (a) Crabtree, R. H. In Ker Ip; p 79. (b) Hiatky, G. G.; Crabtree, R. H. Coord. Chem. Rev. 1985, 65, 1.
 (250) For example: (a) Baudry, D.; Ephritikhine, M.; Felkin, H. J. Chem. Soc., Chem. Commun. 1980, 1243. (b) Baudry, D.; Ephritikhine, M.; Felkin, H.; Zakrzewski, J. J. Chem. Soc., Chem. Commun. 1982, 1235. (c) Baudry, D.; Ephritikhine, M.; Felkin, H.; Holmes-Smith, R. J. Chem. Soc., Chem. Commun. 1983, 788. (d) Felkin, H.; Fillebeen-Khan, T.; Gault, Y.; Holmes-Smith, R.; Zakrzewski, J. Tetrahedron Lett. 1984, 1279. (e) Baudry, D.; Ephritikhine, M.; Felkin, H.; Kakrzewski, J. Tetrahedron Lett. 1984, 1279. (e) Baudry, D.; Ephritikhine, M.; Felkin, H.; Zakrzewski, J. Tetrahedron Lett. 1984, 1260. (g) Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738. (h) Crabtree, R. H.; Mellea, M. F.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1982, 104, 107. (i) Crabtree, R. H.; Demou, P. C.; Eden, D.; Mihelcic, J. M.; Parnell, C. A.; Quirk, J. M. J. Crabtree, R. H.; Parnell, C. P.; Uriarte, R. J. Organometallics 1984, 3, 816. (k) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. J. Chem. Soc., Chem. Commun. 1985, 1829. (l) Crabtree, R. H.; Parnell, C. P.; Uriate, R. J. Organometallics 1987, 6, 696.
 (251) Schulze, C., Ph.D. Thesis, Technical University Berlin, D83, 1989.
- 1989
- (252)
- (253)
- (254)
- Eller, K.; Schwarz, H. Unpublished results. Steinrück, N.; Schwarz, H. Chimia 1988, 42, 263. Steinrück, N.; Schwarz, H. Organometallics 1989, 8, 759. Steinrück, N.; Dange, O.; Stöckigt, D.; Schwarz, H. Angew. Chem. 1990, 102, 429; Angew. Chem., Int. Ed. Engl. 1990, 29, (255)
- (256) Dange, O.; Steinrück, N.; Stöckigt, D.; Schwarz, H. Chem. Ber. 1990, 123, 1583. Jacobson, D. B.; Byrd, G. D.; Freiser, B. S. Inorg. Chem. 1984,
- (257)23, 553.
- Lebrilla, C. B.; Drewello, T.; Schwarz, H. J. Am. Chem. Soc. (258)1987, 109, 5639.
- (259)
- Stepnowski, R. M.; Allison, J. Organometallics 1988, 7, 2097. Lebrilla, C. B.; Drewello, T.; Schwarz, H. Int. J. Mass Spec-trom. Ion Processes 1987, 79, 287. Czekay, G.; Drewello, T.; Eller, K.; Zummack, W.; Schwarz, (260)
- (261)H. Organometallics 1989, 8, 2439. Prüsse, T.; Drewello, T.; Lebrilla, C. B.; Schwarz, H. J. Am.
- (262)Chem. Soc. 1989, 111, 2857. Prüsse, T.; Lebrilla, C. B.; Drewello, T.; Schwarz, H. J. Am.
- (263)Chem. Soc. 1988, 110, 5986.
- (264) Hässelbarth, A.; Prüsse, T.; Schwarz, H. Chem. Ber. 1990, 123. 209.
- (a) Patai, S.; Rappoport, Z. The Chemistry of Organic Silicon (265)Compounds; Wiley-Interscience: New York, 1989. (b) Lam-
- bert, J. B. Tetrahedron 1990, 46, 2677. Eller, K.; Zummack, W.; Schwarz, H.; Roth, L. M.; Freiser, B. S. J. Am. Chem. Soc. 1991, 113, 833. (266)
- Eller, K.; Zummack, W.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1990, 100, 803. (267)
- (268)Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107,
- Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, (269)5876.

- 5876.
 (270) Buckner, S. W.; Freiser, B. S. Polyhedron 1989, 8, 1401.
 (271) Lebrilla, C. B.; Drewello, T.; Schwarz, H. Organometallics 1987, 6, 2450.
 (272) Eller, K.; Schwarz, H. Organometallics 1989, 8, 1820.
 (273) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1976, 98, 7445.
 (274) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1979, 101, 4998.
 (275) There is considerable precedent for ion/(induced) dipole complexes as intermediates in unimolecular reactions of gaseous cations. For reviews, see: (a) Morton, T. H. Tetrahedron 1982, 38, 3195. (b) McAdoo, D. J. Mass Spectrom. Rev. 1988, 7, 363. (c) Heinrich, N.; Schwarz, H. In Ion and Cluster Ion Spectroscopy and Structure; Maier, J. P., Ed.;

Elsevier: Amsterdam, 1989; p 329. For criteria of their in-termediacy, see: (d) Hammerum, S. J. Chem. Soc., Chem. Commun. 1988, 858.

- Commun. 1988, 858.
 (276) For theoretical studies on MCN, see: (a) References 167b, 193. (b) Bauschlicher, C. W., Jr. Surf. Sci. 1985, 154, 70. (c) Nelin, C. J.; Bagus, P. S.; Philpott, M. R. J. Chem. Phys. 1987, 87, 2170. For MNC, see: (d) Reference 276c.
 (277) (a) Frenking, G.; Schwarz, H. Naturwissenschaften 1982, 69, 446. (b) Koch, W.; Frenking, G.; Schwarz, H. Naturwissenschaften 1984, 71, 473. (c) Lee, T. J.; Rendell, A. P. Chem. Phys. Lett. 1991, 177, 491.
 (278) Burgers, P. C.; Holmes, J. L.; Mommers, A. A.; Terlouw, J. K. Chem. Phys. Lett. 1983, 102, 2.
 (279) (a) Longevialle, P.; Botter, B. J. Chem. Soc. Chem. Commun.
- K. Chem. Phys. Lett. 1983, 102, 2.
 (279) (a) Longevialle, P.; Botter, R. J. Chem. Soc., Chem. Commun. 1980, 823. (b) Longevialle, P.; Botter, R. Int. J. Mass Spectrom. Ion Phys. 1983, 47, 179. (c) Longevialle, P.; Botter, R. Org. Mass Spectrom. 1983, 18, 1. (d) Saunders, M.; Vogel, P.; Hagen, E. L.; Rosenfeld, J. Acc. Chem. Res. 1973, 6, 53.
 (280) For reviews, see: (a) References 247a-c. (b) Schwarz, H. Pure Appl. Chem. 1989, 61, 685. (c) Selgren, S. F.; Gellene, G. I. Anal. Instrum. 1988, 17, 131.
 (291) Filter K · Stilze D. Schwarz H. Chem. Phys. Lett. 1989, 154.
- (281) Eller, K.; Sülze, D.; Schwarz, H. Chem. Phys. Lett. 1989, 154, 443.
- (282) For reviews on metal-isocyanide complexes, see: (a) Single-ton, E.; Oosthuizen, H. E. Adv. Organomet. Chem. 1983, 22,
- ton, E.; Oosthuizen, H. E. Adv. Organomet. Chem. 1983, 22, 209. (b) Malatesta, L. Prog. Inorg. Chem. 1959, 1, 283.
 (a) Meier, M.; Dogan, B.; Beckhaus, H.-D.; Rüchardt, C. Nouv. J. Chim. 1987, 11, 1. (b) Meot-Ner (Mautner), M.; Karpas, Z.; Deakyne, C. A. J. Am. Chem. Soc. 1986, 108, 3913.
 (c) Baghal-Vayjooee, M. H.; Collister, J. L.; Pritchard, H. O. Can. J. Chem. 1977, 55, 2634.
 Weith, W. Ber. Dtsch. Chem. Ges. 1873, 6, 210.
 (a) Meier, M.; Müller, B.; Rüchardt, C. J. Org. Chem. 1987, 52, 648. (b) Meier, M.; Rüchardt, C. Tetrahedron Lett. 1983, 4671. (283)
- (284)
- (285)
- (286) Friend, C. M.; Stein, J.; Muetterties, E. L. J. Am. Chem. Soc. 1981, 103, 767.
- 1981, 103, 767.
 (287) (a) Casanova, J., Jr.; Werner, N. D.; Schuster, R. E. J. Org. Chem. 1966, 31, 3473. (b) Fletcher, F. J.; Rabinovitch, B. S.; Watkins, K. W.; Locker, D. J. J. Phys. Chem. 1966, 70, 2823.
 (c) Schneider, F. W.; Rabinovitch, B. S. J. Am. Chem. Soc. 1963, 85, 2365. (d) Schneider, F. W.; Rabinovitch, B. S. J. Am. Chem. Soc. 1962, 84, 4215. (e) Kohlmaier, G.; Rabino-vitch, B. S. J. Phys. Chem. 1959, 63, 1793.
 (288) Eller, K.; Lebrilla, C. B.; Drewello, T.; Schwarz, H. J. Am. Chem. Soc. 1988, 110, 3068.
 (289) Czekay, G.; Drewello, T.; Schwarz, H. J. Am. Chem. Soc.
- Czekay, G.; Drewello, T.; Schwarz, H. J. Am. Chem. Soc. (289)1989, 111, 4561. Czekay, G.; Eller, K.; Schröder, D.; Schwarz, H. Angew
- (290)Chem. 1989, 101, 1306; Angew. Chem., Int. Ed. Engl. 1989, 28, 127

- (291) Batra, R.; Breslow, R. Tetrahedron Lett. 1989, 535.
 (292) Eller, K.; Karrass, S.; Schwarz, H. Unpublished results.
 (293) Wieting, R. D.; Staley, R. H.; Beauchamp, J. L. J. Am. Chem. Soc. 1975, 97, 924.
 (294) Staley, R. H.; Wieting, R. D.; Beauchamp, J. L. J. Am. Chem. Soc. 1977, 99, 5964.
 (205) See along Hadree B. V. Beauchamp, J. L. Anal Chem. 1976.
- (295) See, also: Hodges, R. V.; Beauchamp, J. L. Anal. Chem. 1976, 48, 825.
- (296) (a) Creasy, W. R.; Farrar, J. M. J. Phys. Chem. 1985, 89, 3952.
 (b) Creasy, W. R.; Farrar, J. M. J. Chem. Phys. 1986, 85, 162.
 (c) Creasy, W. R.; Farrar, J. M. J. Chem. Phys. 1987, 87, 5280.
 (297) Allison, J.; Ridge, D. P. J. Organomet. Chem. 1975, 99, C11.
 (298) Fisher, E. R.; Sunderlin, L. S.; Armentrout, P. B. J. Phys.
- Chem. 1989, 93, 7375. Fisher, E. R.; Schultz, R. H.; Armentrout, P. B. J. Phys. (299)
- Chem. **1989**, 93, 7382
- Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 1229. Chowdhury, A. K.; Wilkins, C. L. Int. J. Mass Spectrom. Ion Processes 1988, 82, 163. (300)(301)
- (302)
- Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1980, 102, 4144,
 Kinser, R.; Allison, J.; Dietz, T. G.; deAngelis, M.; Ridge, D.
 P. J. Am. Chem. Soc. 1978, 100, 2706.
 Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 1238. (303) (304)
- (305)
- (306) (307)
- (308)
- Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 1238.
 Jones, R. W.; Staley, R. H. J. Phys. Chem. 1982, 86, 1669.
 Weil, D. A.; Wilkins, C. L. J. Am. Chem. Soc. 1985, 107, 7316.
 Jones, R. W.; Staley, R. H. J. Am. Chem. Soc. 1980, 102, 3794.
 Gord, J. R.; Freiser, B. S. Anal. Chim. Acta 1989, 225, 11.
 Operti, L.; Tews, E. C.; MacMahon, T. J.; Freiser, B. S. J. Am. Chem. Soc. 1989, 111, 9152. (309)
- (a) Tsarbopoulos, A.; Allison, J. Organometallics 1984, 3, 86.
 (b) Tsarbopoulos, A.; Allison, J. Organometallics 1984, 3, 947.
 (a) Prüsse, T.; Schwarz, H. Organometallics 1989, 8, 2856. (b) (310)
- (311)Prüsse, T.; Allison, J.; Schwarz, H. Submitted for publicaion
- (312) Hankinson, D. J.; Miller, C. B.; Allison, J. J. Phys. Chem.
- 1989, 93, 3624.
 (313) Huang, S.; Holman, R. W.; Gross, M. L. Organometallics 1986, 5, 1857.

- (314) Kang, H.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 7502.
- (315) Karrass, S.; Prüsse, T.; Eller, K.; Schwarz, H. J. Am. Chem. Soc. 1989, 111, 9018.
- Lombarski, M.; Allison, J. Int. J. Mass Spectrom. Ion Phys. (316) 1983, 49, 281.
- (317) Larrivee, M. L.; Allison, J. J. Am. Chem. Soc. 1990, 112, 7134.
 (318) Mestdagh, H.; Rolando, C. J. Am. Chem. Soc. 1989, 111, 3476.
- (319) Buckner, S. W.; Gord, J. R.; Freiser, B. S. J. Am. Chem. Soc.
- 7127
- (321) (a) Holland, P. M.; Castleman, A. W., Jr. J. Am. Chem. Soc. 1980, 102, 6174. (b) Holland, P. M.; Castleman, A. W., Jr. J. Chem. Phys. 1982, 76, 4195. (c) Peterson, K. I.; Holland, P. M.; Keesee, R. G.; Lee, N.; Märk, T. D.; Castleman, A. W., Jr. Surf. Sci. 1981, 106, 136.
 (322) Clemmer, D. E.; Sunderlin, L. S.; Armentrout, P. B. J. Phys. Comp. 04, 2008.
- (322) Chem. 1990, 94, 3008.
 (323) (a) Clemmer, D. E.; Armentrout, P. B. J. Am. Chem. Soc. 1989, 111, 8280. (b) Clemmer, D. E.; Armentrout, P. B. J. Phys. Chem. 1991, 95, 3084.
 (324) Sigsworth, S. W.; Castleman, A. W., Jr. J. Am. Chem. Soc.
- 1989, 111, 3566.
- 1989, 111, 3566.
 (325) Radecki, B. D.; Allison, J. J. Am. Chem. Soc. 1984, 106, 946.
 (326) Karrass, S.; Eller, K.; Schulze, C.; Schwarz, H. Angew. Chem. 1989, 101, 634; Angew. Chem., Int. Ed. Engl. 1989, 28, 607.
 (327) Karrass, S.; Eller, K.; Schwarz, H. Chem. Ber. 1990, 123, 939.
 (328) Babinec, S. J.; Allison, J. J. Am. Chem. Soc. 1984, 106, 7718.
 (329) Karrass, S.; Schwarz, H. Helv. Chim. Acta 1989, 72, 633.
 (330) Karrass, S.; Schwarz, H. Organometallics 1990, 9, 2034.
 (331) Eller, K.; Stöckirt, D.; Karrass, S.; Schwarz, H. Unpublished

- (331) Eller, K.; Stöckigt, D.; Karrass, S.; Schwarz, H. Unpublished results.
- (a) Karrass, S.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1990, 98, R1. (b) Karrass, S.; Schwarz, H. Or-(332) ganometallics **1990**, 9, 2409.
- (333) For a condensed-phase precedent of a β-CH₃ shift from a Si(CH₃)₃ group, see: Thomson, S. K.; Young, G. B. Organo-metallics 1989, 8, 2068.
- (334) Sato, H.; Kawasaki, M.; Kasantani, K.; Oka, T. Nippon Kagaku Kaishi 1989, 1240. (335) Burnier, R. C.; Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc.
- 1981, 103, 4360.
- (336) Halle, L. F.; Crowe, W. E.; Armentrout, P. B.; Beauchamp, J. L. Organometallics 1984, 3, 1694
- (337) Sonnenfroh, D. M.; Farrar, J. M. J. Am. Chem. Soc. 1986, 108, 3521
- (338)Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 1566
- (339) Kang, H.; Beauchamp, J. L. J. Am. Chem. Soc. 1986, 108, 5663
- (340) Burnier, R. C.; Byrd, G. D.; Freiser, B. S. Anal. Chem. 1980, 52, 1641.
- (341) Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 163.
 (342) (a) Willey, K. F.; Cheng, P. Y.; Pearce, K. D.; Duncan, M. A. J. Phys. Chem. 1990, 94, 4769. (b) Willey, K. F.; Cheng, P. Y.; Bishop, M. B.; Ducan, M. A. J. Am. Chem. Soc. 1991, 113, 475. 4721
- (343) Lombarski, M.; Allison, J. Int. J. Mass Spectrom. Ion Pro-

- (343) Lombarski, M.; Allison, J. Int. J. Mass Spectrom. Ion 110-cesses 1985, 65, 31.
 (344) Basolo, F. Polyhedron 1990, 9, 1503.
 (345) Schröder, D.; Schwarz, H. Chimia 1989, 43, 317.
 (346) Schröder, D.; Schwarz, H. J. Am. Chem. Soc. 1990, 112, 5947.
 (347) Schröder, D.; Eller, K.; Prüsse, T.; Schwarz, H. Organo-metallics 1991, 10, 2052.
 (348) Grady, W. L.; Bursey, M. M. Int. J. Mass Spectrom. Ion Phys. 1983, 52, 247.
 (349) Forbes, R. A.; Tews, E. C.; Freiser, B. S.; Wise, M. B.; Perone, S. P. Anal. Chem. 1986, 58, 684.

- (349) Forbes, R. A.; Tews, E. C.; Freiser, B. S.; Wise, M. B.; Perone, S. P. Anal. Chem. 1986, 58, 684.
 (350) Forbes, R. A.; Tews, E. C.; Huang, Y.; Freiser, B. S.; Perone, S. P. Anal. Chem. 1987, 59, 1937.
 (351) Forbes, R. A.; Tews, E. C.; Freiser, B. S.; Wise, M. B.; Perone, S. P. J. Chem. Inf. Comput. Sci. 1986, 26, 93.
 (352) Huang, S. K.; Allison, J. Organometallics 1983, 2, 883.
 (352) Huang, S. K.; Allison, J. Organometallics 1983, 2, 883.
- (353) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101, 6449.
- (354) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107,
- (355) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 2605
- (356) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 4373
- (a) For a theoretical study on neutral ferraoxetane, see: Swanstrøm, P.; Jørgensen, K. A. J. Chem. Soc., Dalton Trans. 1990, 1155. (b) Kafafi, Z. H.; Hauge, R. H.; Billups, (357)W. E.; Margrave, J. L. J. Am. Chem. Soc. 1987, 109, 4775. (c) For a general discussion of metallaoxetanes, see: Jørgensen, K. A.; Schiøtt, B. Chem. Rev. 1990, 90, 1483.

- (358) Dietz, T. G.; Chatellier, D. S.; Ridge, D. P. J. Am. Chem. Soc. 1978, 100, 4905

- (359) Bjarnason, A.; Taylor, J. W. Organometallics 1989, 8, 2020.
 (360) Bjarnason, A.; Taylor, J. W. Organometallics 1989, 9, 1493.
 (361) Huang, Y.; Freiser, B. S. J. Am. Chem. Soc. 1989, 111, 2387.
- (361) Huang, I.; Freiser, B. S. J. Am. Chem. Soc. 1989, 111, 2381.
 (362) Stepnowski, R.; Allison, J. J. Am. Chem. Soc. 1989, 111, 449.
 (363) (a) Higashide, H.; Oka, T.; Kasatani, K.; Shinohara, H.; Sato, H. Chem. Phys. Lett. 1989, 163, 485. (b) Higashide, H.; Kaya, T.; Kobayashi, M.; Shinohara, H.; Sato, H. Chem. Phys. Lett.
- 1990, 171, 297. Moini, M.; Eyler, J. R. Chem. Phys. Lett. 1987, 137, 311. (364)
- Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, (365) 1159.
- (366) Bjarnason, A.; Taylor, J. W.; Kinsinger, J. A.; Cody, R. B.; Weil, D. A. Anal. Chem. 1989, 61, 18
- Kang, H.; Jacobson, D. B.; Shin, S. K.; Beauchamp, J. L.; (367)
- Bowers, M. T. J. Am. Chem. Soc. 1986, 108, 5668. Decouzon, M.; Gal, J.-F.; Géribaldi, S.; Rouillard, M.; Sturla, J.-M. Rapid Commun. Mass Spectrom. 1989, 3, 298. (368)
- (369)Hässelbarth, A.; Prüsse, T.; Schwarz, H. Chem. Ber. 1990, 123, 213.
- (370) Cassady, C. J.; Freiser, B. S.; McElvany, S. W.; Allison, J. J. Am. Chem. Soc. 1984, 106, 6125.
- (371) Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107, 1573.
- (372) Eller, K.; Schwarz, H. Inorg. Chem. 1990, 29, 3250. (373) Eller, K.; Schwarz, H. Ber. Bunsenges. Phys. Chem. 1990, 94,
- (374) (a) Bock, H.; Breuer, O. Angew. Chem. 1987, 99, 492; Angew. Chem., Int. Ed. Engl. 1987, 26, 461. (b) Bock, H. Polyhedron 1988, 7, 2429.
- (a) Cenini, S.; La Monica, G. Inorg. Chim. Acta 1976, 18, 279.
- (a) Genni, G., Da Monica, G. Morg. Cont. Acta 1976, 10, 215.
 (b) Braunstein, P.; Nobel, D. Chem. Rev. 1989, 89, 1927.
 For example: (a) Herrmann, W. A.; Weichselbaumer, G.; Paciello, R. A.; Fischer, R. A.; Herdtweck, E.; Okuda, J.; Marz, D. W. Organometallics 1990, 9, 489. (b) Anhaus, J. T.; Kee, T. P.; Schoffeld, M. H.; Schrock, R. R. J. Am. Chem. (376)Soc. 1990, 112, 1642.
- Soc. 1990, 112, 1642.
 (377) For a review on nitrene complexes, see: Nugent, W. A., Haymore, B. L. Coord. Chem. Rev. 1980, 31, 123.
 (378) Prüsse, T.; Schwarz, H. Helv. Chim. Acta 1990, 73, 1163.
 (379) Reviews: (a) Regitz, M.; Binger, P. Angew. Chem. 1988, 100, 1541; Angew. Chem., Int. Ed. Engl. 1988, 27, 1484. (b) Regitz, M.; Binger, P. Nachr. Chem., Tech. Lab. 1989, 37, 896. (c) Regitz, M. Chem. Rev. 1990, 90, 191. (d) Markovski, L. N.; Romanenko, V. D. Tetrahedron 1989, 45, 6019. (e) Regitz, M. In Heteroatom Chemistry; Block, E., Ed.; VCH Publishers: New York, 1990; p 295.
 (380) (a) Appel, R.; Maier, G.; Reisenauer, H. P.; Westerhaus, A.
- (380) (a) Appel, R.; Maier, G.; Reisenauer, H. P.; Westerhaus, A. Angew. Chem. 1981, 93, 215; Angew. Chem., Int. Ed. Engl. 1981, 20, 197. (b) Appel, R.; Westerhaus, A. Tetrahedron Lett. 1981, 2159. (c) Becker, G.; Becker, W.; Knebl, R.; Schmidt, H.; Weber, U.; Westerhausen, M. Nova Acta Leo-act 1086 50 55
- Schmidt, H.; Weber, U.; Westerhausen, M. Nova Acta Leopold. 1985, 59, 55.
 (381) (a) Rösch, W.; Regitz, M. Angew. Chem. 1984, 96, 898; Angew. Chem., Int. Ed. Engl. 1984, 23, 900. (b) Yeung Lam Ko, Y. Y. C.; Carrië, R.; Muench, A.; Becker, G. J. Chem. Soc., Chem. Commun. 1984, 1634. (c) Rösch, W.; Regitz, M. Z. Naturforsch. 1986, 41B, 931.
 (382) (a) Barron, A. R.; Cowley, A. H. Angew. Chem. 1987, 99, 956; Angew. Chem., Int. Ed. Engl. 1987, 26, 907. (b) Milczarek, R.; Rüsseler, W.; Binger, P.; Jonas, K.; Angermund, K.; Krüger, C.; Regitz, M. Angew. Chem. 1987, 99, 957; Angew. Chem., Int. Ed. Engl. 1987, 26, 908. (c) Dötz, K. H.; Tiriliomis, A.; Harms, K.; Regitz, M.; Annen, U. Angew. Chem. 1988, 100, 725; Angew. Chem., Int. Ed. Engl. 1988, 27, 713. (d) Dötz, K. H. In Advances in Carbene Chemistry; Schubert, U., Ed.; Kluwer Academic Publishers: Dordrecht, 1989; p 199. 199.
- (383) For example: (a) Burckett-St.-Laurent, J. C. T. R.; Hitch-cock, P. B.; Kroto, H. W.; Nixon, J. F. J. Chem. Soc., Chem. Commun. 1981, 1141. For a general review, see: (b) Nixon, J. F. Chem. Rev. 1988, 88, 1327.
- (384) Carlin, T. J.; Wise, M. B.; Freiser, B. S. Inorg. Chem. 1981,
- (385) MacMahon, T. J.; Jackson, T. C.; Freiser, B. S. J. Am. Chem.
- Soc. 1989, 111, 421. Jackson, T. C.; Carlin, T. J.; Freiser, B. S. Int. J. Mass Spectrom. Ion Processes 1986, 72, 169. (386)
- (387) Eller, K.; Akkök, S.; Schwarz, H. Helv. Chim. Acta 1990, 73,
- (a) Manuel, T. A. Inorg. Chem. 1964, 3, 1703. (b) Werner, H.;
 Lotz, S.; Heiser, B. J. Organomet. Chem. 1981, 209, 197. (c)
 Harris, R. O.; Powell, J.; Walker, A.; Yaneff, P. V. J. Organomet. Chem. 1977, 141, 217. (d) Lee, G. R.; Cooper, N. J. Organometallics 1989, 8, 1538. (e) Fehlhammer, W. P.; Mayr, A. J. Organomet. Chem. 1980, 191, 153. (f) Beaumont, I. R.;
 Begley, M. J.; Harrison, S.; Wright, A. H. J. Chem. Soc., Chem. Commun. 1990, 1713. See also: (g) Harris, R. O.;
 Yaneff, P. V. J. Organomet. Chem. 1977, 134, C40. (388)

- (389) For example: (a) Sauer, N. N.; Markel, E. J.; Schrader, G. L.; Angelici, R. J. J. Catal. 1989, 117, 295. (b) Oliver, S. W.; Smith, T. D.; Pilbrow, J. R.; Pratt, K. C.; Christov, V. J. Catal. 1988, 111, 88. (c) Angelici, R. J. Acc. Chem. Res. 1988, 21, 387. (d) Friend, C. M.; Roberts, J. T. Acc. Chem. Res. 1988, 21, 394. (e) Curtis, M. D.; Penner-Hahn, J. E.; Schwank, J.; Barait, O.; McCabe, D. J.; Thompson, L.; Waldo, G. Polyhedron 1988, 7, 2411. (f) Ogilvy, A. E.; Skaugset, A. E.; Rauchfuss, T. B. Organometallics 1989, 8, 2739. (g) Liu, A. C.; Friend, C. M. J. Am. Chem. Soc. 1991, 113, 820. (h) Luo, S.; Ogilvy, A. E.; Rauchfuss, T. B.; Rheingold, A. L.; Wilson, S. R. Organometallics 1991, 10, 1002. For a theo-retical study, see: (i) Calhorda, M. J.; Hoffmann, R.; Friend, C. M. J. Am. Chem. Soc. 1990, 112, 50.
 (390) (a) Grundy, K. R.; Roper, W. R. J. Organomet. Chem. 1976, 113, C45. (b) Clark, G. R.; Collins, T. J.; Hall, D.; James, S. M.; Roper, W. R. J. Organomet. Chem. 1977, 16, 291. (b) Grange, P. Catal. Rev.-Sci. Eng. 1980, 21, 135. (c) Fur-imsky, E. Catal. Rev.-Sci. Eng. 1980, 22, 371. (d) Topsøe, H.; Clausen, B. S. Catal. Rev.-Sci. Eng. 1984, 26, 395. (e) Chia-nelli, R. R. Catal. Rev.-Sci. Eng. 1984, 26, 395. (e) Chia-nelli, R. R. Catal. Rev.-Sci. Eng. 1984, 26, 361. (f) Prins, R.; de Beer, V. H. J.; Somorjai, G. A. Catal. Rev.-Sci. Eng. 1989, 31, 1. (g) Zdražil, M.; Kraus, M. In Catalytic Hydrogenation; Cerveny, C., Ed.; Elsevier: Amsterdam, 1986; p 257. (h) Müller, A.; Diemann, E.; Baumann, F.-W. Nachr. Chem.
- Červený, C., Ed.; Elsevier: Amsterdam, 1986; p 257. (h) Müller, A.; Diemann, E.; Baumann, F.-W. Nachr. Chem., Tech. Lab. 1988, 36, 18. (i) Schuman, S. C.; Shalit, H. Catal.
- Rev. 1970, 4, 245. Carlin, T. J.; Sallans, L.; Cassady, C. J.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1983, 105, 6320. (392)
- Stevens, A. E.; Beauchamp, J. L. Chem. Phys. Lett. 1981, 78, (393)291.
- (394) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1981, 103, 190.
- Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1988, 110, 4038. (395)
- Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am. Chem. (396)Soc. 1990, 112, 596. Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, (397)
- 3891 Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, (398)
- 3900. Jacobson, D. B.; Gord, J. R.; Freiser, B. S. Organometallics (399)1989, 8, 2957
- (400) (a) Cossee, P. J. Catal. 1964, 3, 80. (b) Arlman, E. J. J. Catal. 1964, 3, 89. (c) Arlman, E. J.; Cossee, P. J. Catal. 1964, 3, 99.
- For theoretical studies on transition-metal alkylidenes, see:
 (a) References 93d,f, 94c, 144, 167k, 194a, 204b-e,h-k. (b)
 Brooks, B. R.; Schaefer, H. F., III. Mol. Phys. 1977, 34, 193.
 (c) Rappé, A. K.; Goddard, W. A., III. J. Am. Chem. Soc. 1982, 104, 3287. (d) Volatron, F.; Eisenstein, O. J. Am. Chem. Soc. 1986, 108, 2173. (e) Spangler, D.; Wendoloski, J. J.; Dupuis, M.; Chen, M. M. L.; Schaefer, H. F., III. J. Am. Chem. Soc. 1981, 103, 3985. (f) Francl, M. M.; Pietro, W. J.; Hout, R. F., Jr.; Hehre, W. J. Organometallics 1983, 2, 281.
 (g) Carter, A. E.; Goddard, W. A., III. J. Am. Chem. Soc. 1987, 109, 579. (h) Planelles, J.; Merchán, M.; Tomás, F. Chem. Phys. Lett. 1988, 149, 222. (i) Mochizuki, Y.; Tanaka, K.; Ohno, K.; Tatewaki, H.; Yamamoto, S. Chem. Phys. Lett. 1988, 152, 457.
 Uppal, J. S.; Johnson, D. E.; Stalev, R. H. J. Am. Chem. Soc. (401) For theoretical studies on transition-metal alkylidenes, see:
- (402) Uppal, J. S.; Johnson, D. E.; Staley, R. H. J. Am. Chem. Soc. 1981, 103, 508.
- (403) For a theoretical study of Cl₂TiCH₃⁺ with C₂H₄, see: Fujim-oto, H.; Yamasaki, T.; Mizutani, H.; Koga, N. J. Am. Chem.
- (404) Bach, R. D.; Gaughofer, J.; Kevan, L. J. Am. Chem. Soc. 1972, 94, 6860.
 (405) Bach, R. D.; Patane, J.; Kevan, L. J. Org. Chem. 1975, 40,
- (406) Bach, R. D.; Weibel, A. T.; Patane, J.; Kevan, L. J. Am. Chem. Soc. 1976, 98, 6237.
- Chem. Soc. 1976, 98, 6237.
 (407) (a) Jordan, R. F.; Guram, A. S. Organometallics 1990, 9, 2116.
 (b) Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1989, 111, 778. (c) Jordan, R. F.; Bajgur, C. S.; Dasher, W. E.; Rheingold, A. L. Organometallics 1987, 6, 1041. (d) Borkowsky, S. L.; Jordan, R. F.; Hinch, G. D. Organometallics 1991, 10, 1268. (e) Borkowsky, S. L.; Jordan, R. F. Unpublished results, cited in ref 407d. (f) Alelyunas, Y. W.; Jordan, R. F.; Echols, S. F.; Borkowsky, S. L.; Bradley, P. K. Organometallics 1991, 10, 1406.
 (408) (a) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 708, 7410. Review: (b) Jordan, R. F.; Bradley, P. K.; LaPointe, R. E.; Taylor, D. F. New J. Chem. 1990, 14, 505. See also: (c) Jordan, R. F.; LaPointe, R. E.;
- Drauley, F. K.; LaFointe, K. E.; 1aylor, D. F. New J. Chem. 1990, 14, 505. See also: (c) Jordan, R. F.; LaPointe, R. E.; Bajgur, C. S.; Echols, S. F.; Willett, R. J. Am. Chem. Soc. 1987, 109, 4111. (d) Hlatky, G. G.; Turner, H. W.; Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. (e) Reference 186e. (f) Carlin, R. T.; Wilkes, J. S. J. Mol. Catal. 1990, 63, 125. (g) Yang, X.; Stern, C. L.; Marks, T. J. J. Am. Chem. Soc. 1991, 113, 3623. (h) Taube, R.; Krukowka, L. J. Organomet. Chem.

1988, 347, C9. (i) Jordan, R. F.; Bradley, P. K.; Baenziger, N. C.; LaPointe, R. E. J. Am. Chem. Soc. 1990, 112, 1289. (j) Jordan, R. F.; LaPointe, R. E.; Baenziger, N.; Hinch, G. D. Organometallics 1990, 9, 1539. (k) Gianetti, E.; Nicoletti, G. M.; Mazzocchi, R. J. Polym. Sci., Polym. Chem. Ed. 1985, 23, 2117.

- 2117.
 (409) For a theoretical study of Cp₂TiCH₃⁺ with C₂H₄, see: (a) Jolly, C. A.; Marynick, D. S. J. Am. Chem. Soc. 1989, 111, 7968. For the related reaction of Cp₂TiH⁺, see: (b) Lauher, J. W.; Hoffmann, R. J. Am. Chem. Soc. 1976, 98, 1729.
 (410) Richardson, D. E.; Christ, C. S., Jr.; Sharpe, P.; Ryan, M. F.; Eyler, J. R. In Bonding Energetics in Organometallic Compounds; Marks, T. J., Ed.; ACS Symposium Series 428; American Chemical Society: Washington, DC, 1990; p 70.
 (411) Thompson, M. E.; Baxter, S. M.; Bulls, A. R.; Burger, B. J.; Nolan, M. C.; Santarsiero, B. D.; Schaefer, W. P.; Bercaw, J. E. J. Am. Chem. Soc. 1987, 109, 203.
 (412) Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am. Chem.
- (412) Christ, C. S.; Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1990, 112, 4778.
- (413) (a) Jordan, R. F.; Dasher, W. E.; Echols, S. F. J. Am. Chem. Soc. 1986, 108, 1718. (b) Guram, A. S.; Jordan, R. F.; Taylor, D. F. J. Am. Chem. Soc. 1991, 113, 1833. (c) Bochmann, M.; Wilson, L. M. J. Chem. Soc., Chem. Commun. 1986, 1610. (d) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.; Mo-tevalli, M. Organometallics 1988, 7, 1148.
- (414) Mandich, M. L.; Steigerwald, M. L.; Reents, W. D., Jr. J. Am. Chem. Soc. 1986, 108, 6197.
- (415) Kappes, M. M.; Staley, R. H. J. Am. Chem. Soc. 1982, 104,
- (416) Smith, A.; Pan, Y.; Ridge, D. P. Cited in ref 35h.
- (417) Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, 6176.
- (418) Murad, E. J. Chem. Phys. 1980, 73, 1381.
 (419) Magnera, T. F.; David, D. E.; Stulik, D.; Orth, R. G.; Jonkman, H. T.; Michl, J. J. Am. Chem. Soc. 1989, 111, 5036.
- (420)Cassady, C. J.; Freiser, B. S. J. Am. Chem. Soc. 1986, 108, 5690.
- (421) Schröder, D.; Schwarz, H. Angew. Chem. 1990, 102, 925; An-gew. Chem., Int. Ed. Engl. 1990, 29, 910.
- (422) Buckner, S. W.; Freiser, B. S. J. Am. Chem. Soc. 1987, 109, 4715.
- (423) For applications of alkylidene complexes in organic synthesis, see e.g. refs 200f,g, and 382d.
- see e.g. refs 200f,g, and 382d.
 (424) For example: (a) References 200c,j. (b) Cutler, A.; Fish, R. W.; Giering, W. P.; Rosenblum, M. J. Am. Chem. Soc. 1972, 94, 4354. (c) Fischer, E. O.; Held, W. J. Organomet. Chem. 1976, 112, C59. (d) Marsella, J. A.; Folting, K.; Huffman, J. C.; Caulton, K. G. J. Am. Chem. Soc. 1981, 103, 5596. (e) Labinger, J. A.; Schwartz, J. J. Am. Chem. Soc. 1975, 97, 1596. (f) Casey, C. P.; Miles, W. H.; Tukuda, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761. (g) Casey, C. P.; Miles, W. H.; Tukuda, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761. (g) Casey, C. P.; Miles, W. H.; Tukuda, H.; O'Connor, J. M. J. Am. Chem. Soc. 1982, 104, 3761. (g) Casey, C. P.; Miles, W. H.; Tukuda, H.; Cutler, A. R. J. Organomet. Chem. 1981, 213, C31. For rearrangements involving alkyl shifts, see: (i) Bly, R. S.; Bly, R. K. J. Chem. Soc., Chem. Commun. 1986, 1046. (j) Bly, R. S.; Silverman, G. S. Organometallics 1984, 3, 1765. (k) Bly, R. S; Hossain, M. M.; Lebioda, L. J. Am. Chem. Soc. 1985, 107, 5549. 985, 107, 5549.
- (425) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1978, 100, 2584.
- (426) Kappes, M. M.; Staley, R. H. J. Am. Chem. Soc. 1981, 103, 1286
- (427) Walba, D. M.; DePuy, C. H.; Grabowski, J. J.; Bierbaum, V. M. Organometallics 1984, 3, 498.
- (428) Schröder, D.; Schwarz, H. Angew. Chem. 1990, 102, 1466; Angew. Chem., Int. Ed. Engl. 1990, 29, 1431.
 (429) Jackson, T. C.; Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1984, 106, 1252.
 (400) Schwarz, H. Angew. Chem. Soc. 1984, 106, 1252.
- (430) Schröder, D.; Schwarz, H. Angew. Chem. 1990, 102, 1468; Angew. Chem., Int. Ed. Engl. 1990, 29, 1433.
- (431) Schröder, D.; Eller, K.; Schwarz, H. Helv. Chim. Acta 1990, 73, 380.
- (432) Sharpless, K. B.; Teranishi, A. Y.; Bäckvall, J. E. J. Am. Chem. Soc. 1977, 99, 3120.
- (433) Huang, Y.; Freiser, B. S. Inorg. Chem. 1990, 29, 2052.
 (434) Huang, Y.; Freiser, B. S. J. Am. Chem. Soc. 1990, 112, 5085.
 (435) Gord, J. R.; Buckner, S. W.; Freiser, B. S. J. Am. Chem. Soc.
- 1989, 111, 3753.
- Chowdhury, A. K.; Cooper, J. R.; Wilkins, C. L. Anal. Chem. 1989, 61, 86. (436)
- (437) Huang, Y.; Freiser, B. S. J. Am. Chem. Soc. 1990, 112, 1682.
 (438) Müller, J.; Goll, W. Chem. Ber. 1973, 106, 1129.
 (439) Jacobson, D. B.; Freiser, B. S. J. Am. Chem. Soc. 1985, 107,
- (439)7399.
- (440)Corderman, R. R.; Beauchamp, J. L. J. Am. Chem. Soc. 1976, 98, 5700.
- (441) Corderman, R. R.; Beauchamp, J. L. Inorg. Chem. 1978, 17, 68.

- (442) Jacobson, D. B.; Byrd, G. D.; Freiser, B. S. J. Am. Chem. Soc. 1982, 104, 2320
- 1982, 104, 2320.
 (443) (a) Sharpe, P.; Christ, C. S.; Eyler, J. R.; Richardson, D. E. Int. J. Quantum Chem., Quantum Chem. Symp. 1988, 22, 601. (b) Eyler, J. R.; Richardson, D. E. J. Am. Chem. Soc. 1985, 107, 6130. (c) Phelps, D. K.; Gord, J. R.; Freiser, B. S.; Weaver, M. J. J. Phys. Chem. 1991, 95, 4338.
 (444) See, also: (a) Schumacher, E.; Taubenest, R. Helv. Chim. Acta 1964, 47, 1525. (b) Schumacher, E.; Taubenest, R. Helv. Chim Acta 1966, 49, 1447.
- Chim. Acta 1966, 49, 1447.
 (445) Burnier, R. C.; Freiser, B. S. Inorg. Chem. 1979, 18, 906.
 (446) Corderman, R. R.; Beauchamp, J. L. J. Am. Chem. Soc. 1976, 98, 3998.
- (447) (a) Müller, J. Angew. Chem. 1972, 84, 725; Angew. Chem., Int. Ed. Engl. 1972, 11, 653. (b) Müller, J. In The Organic Chemistry of Iron; Koerner von Gustorf, E. A., Grevels, F.-W., Fischler, I., Eds.; Academic Press: New York, 1978; Vol. 1, p 145. (c) Charalambous, J. Mass Spectrometry of Metal Compounds; Butterworths: London, 1975.
- (448) Müller, J.; Fenderl, K. Chem. Ber. 1971, 104, 2207.
 (449) Müller, J.; Goll, W. Chem. Ber. 1974, 107, 2084.
 (450) Müller, J. Adv. Mass Spectrom. 1974, 6, 823.
 (451) Weddle C. H. Alizary L. Biden D. B. Law. Chem. Chem. 2014, 2014.
- (451) Weddle, G. H.; Allison, J.; Ridge, D. P. J. Am. Chem. Soc. 1977, 99, 105.
- (452) For a recent determination of D°[(CO), Fe⁺-CO] (n = 0-4), see: Norwood, K.; Ali, A.; Flesch, G. D.; Ng, C. Y. J. Am. Chem. Soc. 1990, 112, 7502.
 (453) (a) Dewar, J. S. Bull. Soc. Chim. 1951, 18, C79. (b) Chatt, J.;

- (453) (a) Dewar, J. S. Butt. Soc. Chim. 1951, 18, C19. (b) Chatt, J.; Duncanson, L. A. J. Chem. Soc. 1953, 2939.
 (454) Bauschlicher, C. W., Jr. J. Chem. Phys. 1986, 84, 260.
 (455) (a) Blomberg, M.; Brandemark, U.; Johansson, J.; Siegbahn, P.; Wennerberg, J. J. Chem. Phys. 1988, 88, 4324. (b) Kuzminskii, M. B.; Bagatur'yants, A. A.; Kazanskii, V. B. Izv. Akad. Nauk SSSR Ser. Khim. 1986, 284. (c) Merchán, M.; Nebot-Gil, I.; González-Luque, R.; Orti, E. J. Chem. Phys. 1987, 87, 1690. 1987, 87, 1690.
- (456) (a) Bauschlicher, C. W., Jr.; Barnes, L. A. Chem. Phys. 1988, (124, 383. (b) Mavridis, A.; Harrison, J. F.; Allison, J. J. Am. Chem. Soc. 1989, 111, 2482.
- 124, 383. (b) Mavridis, A.; Harrison, J. F.; Allison, J. J. Am. Chem. Soc. 1989, 111, 2482.
 (457) For theoretical studies on neutral M-CO, see: (a) References 95, 167b, c, ac, an, 191d, r, 192l, ag, an, 454, and 455. (b) Walch, S. P.; Goddard, W. A., III. J. Am. Chem. Soc. 1976, 98, 7908.
 (c) Clark, D. T.; Cromarty, B. J.; Sgamellotti, A. Chem. Phys. 1979, 34a, 114. (e) Bagus, P. S.; Roos, B. O. J. Chem. Phys. 1981, 75, 5961. (f) Ha, T.-K.; Nguyen, M. T. J. Mol. Struct. (THEOCHEM) 1984, 109, 331. (g) Bauschlicher, C. W., Jr. Chem. Phys. Lett. 1985, 115, 387. (h) Blomberg, M. R. A.; Brandemark, U. B.; Siegbahn, P. E. M.; Mathisen, K. B.; Karlström, G. J. Phys. Chem. 1985, 89, 2171. (i) Basch, H.; Cohen, D. J. Am. Chem. Soc. 1983, 105, 3856. (j) Bauschlicher, C. W., Jr.; Barnedemark, U. B.; Siegbahn, P. E. M.; Mathisen, K. B.; Karlström, G. J. Phys. Chem. 1985, 89, 2171. (i) Basch, H.; Cohen, D. J. Am. Chem. Soc. 1983, 105, 3856. (j) Bauschlicher, C. W., Jr.; Bayus, P. S.; Nelin, C. J.; Roos, B. O. J. Chem. Phys. 1986, 85, 354. (k) Rives, A. B.; Fenske, R. F. J. Chem. Phys. 1986, 85, 756. (m) Rohlfing, C. M.; Hay, P. J. J. Chem. Phys. 1985, 83, 4641. (n) Bauschlicher, C. W., Jr.; Barnes, L. A.; Langhoff, S. R. Chem. Phys. Lett. 1988, 151, 391. (o) Basch, H. Chem. Phys. Lett. 1985, 116, 58. (p) Hermann, K.; Bagus, P. S. Phys. Rev. B 1977, 16, 4195. (q) Smith, G. W.; Carter, E. A. J. Phys. Chem. 1981, 95, 2327. (r) Veillard, H. Nouv. J. Chim. 1978, 2, 215. (s) Davidson, E. R. In The Challenge of d and f Electrons; Salahub, D. R., Zerner, M. C., Eds.; ACS Symposium Series 394; American Chemical Society: Washington, DC, 1989, 91, 533. (1) Bagus, P. S.; Hermann, K.; Bauschlicher, C. W., Jr. J. Chem. Phys. Lett. 1986, 127, 354. (v) Broomfield, K.; Lambert, R. M. Chem. Phys. Lett. 1987, 139, 267. (w) Jeung, G. H.; Koutecký, J. Chem. Phys. Lett. 1986, 127, 555. (z) Guenzburger, D.; Saitovitch, E. M. B.; De Paoli, M. A.; Manela, H. J. Chem. Phys. Lett. 1987, 139, 267. (w) Jeung, G. H.; Koutecký, (457) For theoretical studies on neutral M-CO, see: (a) References
- 1990; p 1.
- For example: (a) Guo, B. C.; Castleman, A. W., Jr. Int. J. (459)Mass Spectrom. Ion Processes 1990, 100, 665. (b) Guo, B. C.; Purnell, J. W.; Castleman, A. W., Jr. Chem. Phys. Lett. 1990, 168, 155. (c) Tang, I. N.; Castleman, A. W., Jr. J. Chem.

Phys. 1972, 57, 3638. (d) Gleim, K. L.; Guo, B. C.; Keesee, R. G.; Castleman, A. W., Jr. J. Phys. Chem. 1989, 93, 6805. (460) Staley, R. H.; Beauchamp, J. L. J. Am. Chem. Soc. 1975, 97,

- 5920 Operti, L.; Tews, E. C.; Freiser, B. S. J. Am. Chem. Soc. 1988, (461) 10, 3847
- (462) Uppal, J. S.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 1235.
 (463) Jones, R. W.; Staley, R. H. J. Phys. Chem. 1982, 86, 1387.
- Kappes, M. M.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, (464)1813.
- Jones, R. W.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 2296. (466) Kappes, M. M.; Jones, R. W.; Staley, R. H. J. Am. Chem. Soc. 1982, 104, 888.
- (a) Cooks, R. G.; Kruger, T. L. J. Am. Chem. Soc. 1977, 99, 1279. (b) McLuckey, S. A.; Cameron, D.; Cooks, R. G. J. Am. Chem. Soc. 1981, 103, 1313. (467)
- (468) McLuckey, S. A.; Schoen, A. E.; Cooks, R. G. J. Am. Chem. Soc. 1982, 104, 848.
 (469) Strobel, F.; Ridge, D. P. Inorg. Chem. 1988, 27, 891.
 (470) Marinelli, P. J.; Squires, R. R. J. Am. Chem. Soc. 1989, 111,
- 101.
- (471) Magnera, T. F.; David, D. E.; Michl, J. J. Am. Chem. Soc. 1989, 111, 4100.
- (472) (a) Curtiss, L. A.; Jurgens, R. J. Phys. Chem. 1990, 94, 5509.
 (b) Hofmann, H.-J.; Hobza, P.; Cammi, R.; Tomasi, J.; Zahradnik, R. J. Mol. Struct. (THEOCHEM)1989, 201, 339.
 (473) (a) Rosi, M.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1989, 90, 7264. Note that the quoted preliminary results of Marinelli and Squires differ from those of the original publication (ref 470). (b) Rosi, M.; Bauschlicher, C. W., Jr. J. Chem. Phys. 1990, 92, 1876.
 (474) For calculations on neutral M(H.O) and (a) Rosi (c) R
- Phys. 1990, 92, 1876.
 (474) For calculations on neutral M(H₂O), see: (a) References 95, 167ac, 454, and 457h. (b) Bauschlicher, C. W., Jr. Chem. Phys. Lett. 1987, 142, 71. (c) Sauer, J.; Haberlandt, H.; Pacchioni, G. J. Phys. Chem. 1986, 90, 3051. (d) Blomberg, M. R. A.; Brandemark, U. B.; Siegbahn, P. E. M. Chem. Phys. Lett. 1986, 126, 317. For M(NH₃), see: (e) References 454 and 4576. 454 and 457t
- (475) Lessen, D. E.; Asher, R. L.; Brucat, P. J. J. Chem. Phys. 1990, 93, 6102.
- (476) Stevens, A. E.; Beauchamp, J. L. J. Am. Chem. Soc. 1979, 101, 245.
- (477) Hop, C. E. C. A.; McMahon, T. B. J. Am. Chem. Soc. 1991, 113, 355.

- (478) Reviews: (a) Reference 4d. (b) Kubas, G. J. Acc. Chem. Res. 1988, 21, 120. (c) Kubas, G. J. Comments Inorg. Chem. 1988, 1, 17. (d) Crabtree, R. H. Acc. Chem. Res. 1990, 23, 95. Many (d) Gradiec, R. H. Act. Onem. Res. 1990, 20, 50; Mally further references may be found cited in: (e) Bianchini, C.; Laschi, F.; Peruzzini, M.; Ottaviani, F. M.; Vacca, A.; Zanello, P. Inorg. Chem. 1990, 29, 3394. (f) Chinn, M. S.; Heinekey, D. M. J. Am. Chem. Soc. 1990, 112, 5166.
 (479) Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 12, 2720.
- 113, 2769.
- (480) Irikura, K. K.; Beauchamp, J. L. J. Phys. Chem., submitted for publication.
- (481) CH4 activation by gas-phase ions is described: Schwarz, H. Angew. Chem. 1991, 103, 837; Angew. Chem., Int. Ed. Engl. 1991, 30, 820.
- (482) Prüsse, T.; Czekay, G.; Schwarz, H. Chem. Ber. 1991, 124, 141.
- (483) Prüsse, T.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes 1991, 107, 135.
- (484) Hill, Y. D.; Freiser, B. S.; Bauschlicher, C. W., Jr. J. Am. Chem. Soc. 1991, 113, 1507.
- (485) Huang, Y.; Hill, Y. D.; Freiser, B. S. J. Am. Chem. Soc. 1991, 113. 840.
- (486) Irikura, K. K.; Beauchamp, J. L. J. Am. Chem. Soc. 1991, 113, 2767.
- (487) Siedle, A. R.; Newmark, R. A.; Schroepfer, J. N.; Lyon, P. A. Organometallics 1991, 10, 400.
- (488) Bjarnason, A. Organometallics 1991, 10, 1244
- Eller, K.; Schwarz, H. Int. J. Mass Spectrom. Ion Processes, (489) in press
- (490) Chen, J.,-Z.; Miller, J. M. J. Am. Soc. Mass Spectrom. 1991, 2, 120.
- (491) Guo, B. C.; Castleman, A. W., Jr. Chem. Phys. Lett. 1991, 181, 16.
- (492) Kemper, P. R.; Bowers, M. T. J. Phys. Chem. 1991, 95, 5134. (493) Hop, C. E. C. A.; McMahon, T. B. Inorg. Chem. 1991, 30, 2828.
- (494) Schultz, R. H.; Armentrout, P. B. J. Chem. Phys. 1991, 94, 2262.
- (495) Chen, Y.-M.; Clemmer, D. E.; Armentrout, P. B. J. Chem. Phys. 1991, 95, 1228.
- (496) Lessen, D. E.; Asher, R. L.; Brucat, P. J. J. Chem. Phys. 1991, 95, 1414.
- (497) Tsipis, C. A. Coord. Chem. Rev. 1991, 108, 163.